
Iteration Abstraction in Sather

STEPHAN MURER, STEPHEN OMOHUNDRO,

DAVID STOUTAMIRE, and CLEMENS SZYPERSKI

International Computer Science Institute

Sather extends the notion of an iterator in a powerful new way. We argue that iteration abstrac-

tions belong in class interfaces on an equal footing with routines. Sather iterators were derived

from CLU iterators but are much more 
exible and better suited for object-oriented program-

ming. We retain the property that iterators are structured, i.e. strictly bound to a controlling

structured statement. We motivate and describe the construct along with several simple ex-

amples. We compare it with iteration based on CLU iterators, cursors, riders, streams, series,

generators, coroutines, blocks, closures, and lambda expressions. Finally, we describe experiences

with iterators in the Sather compiler and libraries.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-

gramming; D.3.3 [Programming Languages]: Language Constructs and Features|control

structures; coroutines; F.3.3 [Logics and Meanings of Programs]: Studies of Program Con-

structs|control primitives

General Terms: Languages, Design

Additional Key Words and Phrases: General control structures, iteration abstraction, Sather

1. INTRODUCTION AND MOTIVATION

Sather is an object-oriented language developed at the International Computer

Science Institute [Stoutamire and Omohundro 1995]. It has clean and simple syntax,

parameterized classes, object-oriented dispatch (late binding), multiple inheritance,

strong typing, and garbage collection. It was originally derived from Ei�el but aims

to achieve the performance of C without sacri�cing elegance or safety. The �rst

version of the language (\Sather 0") was released in May, 1991. Feedback from users

and our own use led to the design of \Sather 1" which incorporated a number of

new language constructs. This paper describes Sather iterators, a form of iteration

abstraction.

The original Sather had a fairly conventional until ... loop ... end state-

ment. While this su�ces for the most basic iterative tasks, we felt the need for a

more general construct. As with C++, Sather 0 libraries made heavy use of cursor

objects to iterate through the contents of container objects [Omohundro and Lim

1992]. While these work quite well in certain circumstances, they have a number of

problems, described in detail in section 4. That section also describes approaches

based on riders, closures, streams, series, generators, coroutines and blocks.

Authors' present addresses: Stephan Murer, Credit Suisse = Os1, CH-8070 Zurich, Switzer-

land; stephan.murer@ska.com. Stephen Omohundro, NEC Research Institute, Inc., 4 In-

dependence Way, Princeton, NJ 08540; om@research.nj.nec.com. David Stoutamire, The

International Computer Science Institute, 1947 Center St, Suite 600, Berkeley, CA 94704;

davids@icsi.berkeley.edu. Clemens Szyperski, School of Computing Science, Queensland Uni-

versity of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; c.szyperski@qut.edu.au.



2 � Stephan Murer et al.

Like the language designers of CLU [Liskov and Guttag 1986], we felt a need to

encapsulate the common operation of iterating through a data structure. Typical

loops (such as Sather until loops) initialize some iteration variables and then re-

peatedly execute the body of the loop, updating the variables in some way, and

testing for the end of the loop. Important examples of this pattern arise when step-

ping through the elements of container objects. The code for initializing, updating,

and testing iteration variables is often complex and error prone. Errors having to

do with the initialization or termination of iteration (\fencepost" errors) are very

common. The code to step through complex containers such as hash tables typi-

cally must utilize the detailed internal structure of the container, sometimes causing

duplication of virtually the same code in many places. Each of these observations

argues for making the iteration operation a part of the interface of the container

class rather than a part of the code in the client of the container. Another goal

for the iterator design was to allow iterators to be programmed in an active style,

without having to explicitly encode the control structure as state, as is required for

cursors and most other iteration constructs.

Beyond its use in Sather, the iterator-based loop construct �ts well into other

structured programming languages. Its encapsulation of iterator states decouples

separate iteration processes and allows them to be nested.

The name \iterator" and the initial design were derived from the iterator con-

struct in the CLU language. A CLU iterator is like a routine except that it may

\yield" in addition to returning. It may only be called in the head of a special

\for" loop construct. The loop is executed once each time the iterator yields a

value. Upon termination of the iterator, the loop exits. While CLU iterators can

deal with the simplest iteration situations, such as stepping through the elements

of arrays and other containers, they have several limitations which Sather iterators

remove:{

|One iterator per loop: There is no simple way to step through two structures

simultaneously in CLU.

|No way to modify elements: While CLU iterators support the retrieval of elements

from a structure, there is no straightforward way to add or modify elements.

|Iterator arguments are loop invariant: There is no clean way to pass loop variant

values to an iterator.

We wanted Sather iterators to retain the clean design of CLU iterators while

removing these limitations. Similar to CLU, Sather iterators look like routines

except that they may yield or quit instead of returning from a call. (Routines

in Sather are the equivalent of methods [Goldberg and Robson 1985] or member

functions [Ellis and Stroustrup 1990] in other object-oriented languages. The name

\routine" comes from Sather's roots in Ei�el [Meyer 1988]. In Sather parlance,

\method" means either a routine or an iterator.) Like C and Ei�el, method argu-

ments in Sather are passed by value. Sather iterators extend CLU iterators in two

important ways:{

| Multiple iterators may be invoked within a single loop, because they may oc-

cur as expressions anywhere in the loop and are not restricted to the loop head. This

allows stepping through multiple structures simultaneously. The loop terminates



Iteration Abstraction in Sather � 3

as soon as the �rst of the iterators terminates.

| In contrast to CLU, Sather provides hot iterator arguments which are reeval-

uated each time the control is passed back to the iterator. Such arguments may

be used to pass data to the iterator which varies on each iteration. In contrast

to CLU iterators which may only generate a sequence of values, these arguments

allow classes to de�ne iterators that modify successive elements of a structure, i.e.

to \consume" a sequence of values. In Sather , iterator arguments are hot unless

they are declared with the once keyword, but self is never hot.

The rest of this paper is organized as follows. Section 2 introduces the Sather

iterator syntax and gives some simple examples for motivation. Section 3 describes

iterators in more detail. Section 4 compares iterators with other constructs that

serve similar purposes. Section 5 describes experience with iterators in the Sather

compiler and libraries.

2. EXAMPLES

The Sather loop statement has the simple form: \loop ... end". Iterators may

only be called within loop statements. When an iterator is called, its body is

executed until it either quits or yields. If it yields, any return value is returned

to the loop and execution continues as if it were a routine call. The execution

state of the iterator is maintained, however. The next call to the iterator will

transfer control to the statement following the yield. The local variables and once

arguments retain their previous values. When an iterator quits instead of yielding,

the loop is immediately broken and execution continues with the statement which

follows the loop. In order to be able to distinguish visually between iterator and

routine calls, the language requires iterator names to end with an exclamation

mark. This alerts the reader to all places where the control 
ow may change. This

is helpful because iterators may occur as an expression anywhere in the loop.

2.1 Trivial Iterators

Every class is automatically provided with the three iterators: while!(BOOL),

until!(BOOL) and break! which may be used to obtain several standard forms

of loop functionality. For example, while! is de�ned as:{

while!(pred:BOOL) is

-- Yields while `pred' is true, then quits.

loop

if pred then yield

else quit

end

end

end

It may be used to obtain the standard \while ... do" behaviour:

i:=0;

loop while!(i<size);

: : :use i : : :

i:=i+1

end



4 � Stephan Murer et al.

The while! iterator takes a single Boolean argument which is evaluated on each

iteration of the loop. As long as the argument evaluates to true, the iterator yields.

This is an example of an iterator that yields without returning a value. It is merely

used to control the loop. Once the argument evaluates to false, the iterator quits

and breaks the loop. By placing the while! iterator at the end of the loop, a

\do ... while" form is possible:{

i:=0;

loop

: : :use i : : :

i:=i+1;

while!(i<size)

end

Note that the arbitrary placement of the while iterator also makes it easy to

implement loops with a single conditional exit in their middle in a structured way

(these are the so-called \n1=2 loops").

2.2 Integer Iterators

The integer class INT de�nes a number of useful iterators including upto!. In Sather

iterators (and routines), the implicit argument self denotes the object on which

the routine is invoked. In the upto! iterator, self is of type INT. (Keep in mind

that self is always implicitly a once argument of any iterator.)

upto!(once limit:INT):INT is

-- Yield successive integers from self up to and including `limit'.

r:INT:=self;

loop

while!(r<=limit);

yield r;

r:=r+1

end

end

The upto! iterator can be used in place of the explicit initialization, increment,

and termination test in the previous loops. For example, to sum the integers from

10 to 20, one might say:{

x:=0; loop x:=x + 10.upto!(20) end

A useful iterator for computing this kind of sum is:{

sum!(summand:INT):INT is

-- Yield the sum of the previous values of `summand'.

r:INT:=0;

loop

r:=r+summand;

yield r

end

end

sum! can again be used in place of the explicit initialization in the previous loop,

so the values could instead be summed by executing:{



Iteration Abstraction in Sather � 5

loop x:=sum!(10.upto!(20)) end

This example also shows that iterators can be used as a part of expressions, just

like functions. The results yielded by upto! are directly used as the arguments for

sum!. Note that the same loop could be written more verbosely as:{

loop i:INT:=10.upto!(20); x:=sum!(i) end

2.3 Container Iterators

Most container classes in the Sather libraries de�ne iterators to yield and modify

the contained elements. While some containers such as arrays are very simple, other

containers have complex implementation (such as hash tables, which are iterated

over throughout the Sather compiler). The iteration construct used by client code

appears the same for either container.

Arrays are variable size objects in Sather. asize returns the size of the current

array and bracketed index expressions with values between 0 and asize� 1 serve

to access array elements. The ARRAY{T} class of arrays with elements of type T

includes the following iterators:{

ind!:INT is -- Yield all indices of self.

loop yield 0.upto!(asize-1) end

end;

elt!:T is -- Successively yield the elements of self.

loop yield [ind!] end

end;

set!(x:T) is -- Set the elements to successive values of `x'.

loop [ind!]:=x; yield end

end

These are also examples of nested iterators, where the iterator ind! generates a

stream of indices used by elt! and set! to index into the array. (Nesting iterators

allows the formation of new iterators by abstracting from existing ones.) To set the

elements of an array a:ARRAY{INT} to the constant value 7, you simply write:{

loop a.set!(7) end

To double the elements write:{

loop a.set!(2*a.elt!) end

If b is another object of type ARRAYfTg, we copy a into b (stopping at the end of

the shorter of the two):{

loop b.set!(a.elt!) end

To compute the sum of the products of the elements of two such arrays:{

loop x:=sum!(a.elt!*b.elt!) end

Other examples providing set! and elt! composition iterators include sparse and

distributed (cf. pSather [Murer et al. 1993]) arrays with complex underlying data

structures. Although there are routines to access and write each element separately,

the knowledge that a whole set of contiguous elements is to be written allows for a



6 � Stephan Murer et al.

much more e�cient implementation of the corresponding iterators compared to the

single element accessor routines. Consider, for example, a block-wise distributed

matrix with a central directory pointing to blocks which are matrices themselves. A

row or column iterator for such a matrix yields all elements of the same block before

consulting the directory for the next block containing elements of the same row or

column. Accessing the row or column element-wise requires a directory access for

each element leading to a potential bottleneck in a parallel implementation, or

requiring the explicit implementation of suitable caching heuristics.

Many other classes similarly de�ne iterators as part of their interfaces. For exam-

ple, hash tables are able to yield their elements, and trees and graphs have iterators

to yield their nodes in depth-�rst and breadth-�rst orders (see inorder! in Figure

2). Note that while simple array iterators are merely convenient, iterators over more

complex data structures with a hidden internal representation are an indispensable

tool for reasons of both e�ciency and abstraction.

3. DETAILS OF THE ITERATOR CONSTRUCT

In the previous sections we informally introduced the iterator construct, the ele-

ments of which we will describe more precisely below. We begin by de�ning the

key terms and conclude by de�ning the construct using these terms.

Loop statement. A control structure delimited using the keywords loop and end,

causing repeated execution of the enclosed statements. Loop termination is con-

trolled by iterators called from within the loop.

Iterator method. A method whose name ends in an exclamation point. Iterator

methods can only be invoked from within loop statements. In addition to all con-

structs allowed within routines (except return statements), iterators may contain

yield and quit statements and may have once arguments as described below.

Iterator call. A textual call to an iterator from within a loop statement. Denoted

by the name of the iterator (which includes an exclamation point) followed by a list

of arguments. An iterator call is always bound to the innermost lexically enclosing

loop statement.

Once argument. Arguments of iterator methods marked with the once keyword

at de�nition. The actual argument passed to a once argument is not intended to

change its value after the �rst execution of the corresponding iterator call and before

the corresponding loop statement terminates. Only the value obtained during the

�rst call to the iterator is used in subsequent calls. To ensure a de�ned iteration

state during loop execution, the only argument used for method dispatching, self,

implicitly is a once argument. Once arguments allow an implementation to avoid

redundant evaluations of corresponding iterator arguments in the calling context.

Hot argument. Arguments of iterator methods not marked with the once key-

word. The expression for the actual argument is evaluated at every call.

Yield statement. The yield statement, denoted by the keyword yield, may only

be used in the body of an iterator method. Its execution causes control and any

return values to be passed back to the calling loop statement, resuming execution

just after the iterator call.

Quit statement. The quit statement, denoted by the keyword quit, may only be

used in the body of an iterator method. Its execution causes the corresponding loop



Iteration Abstraction in Sather � 7

statement to terminate immediately. Exiting from the body of an iterator method

is considered an implicit execution of a quit statement.

Each textual iterator call maintains the state of execution of its iterator. When a

loop is �rst entered, the execution state of all enclosed iterator calls is initialized.

The �rst time each iterator call is encountered in the execution of the loop, each of

the arguments is evaluated. On subsequent calls, however, once arguments retain

their earlier values; only the expressions for hot arguments are re-evaluated. When

an iterator is �rst called, it begins execution with the �rst statement in its body. If

a yield statement is executed, control is passed back to the caller and the current

value of the return parameters, if any, are returned. A subsequent call on the

iterator resumes execution with the statement following this yield statement. If an

iterator executes quit or reaches the end of its body, control passes immediately

to the end of the enclosing loop in the caller. In this case no values are returned.

The interface of a class includes iterators on an equal footing with routines. As

with routines, iterators may de�ne conditionally compiled preconditions and post-

conditions. Preconditions are checked on each call to the iterator. Postconditions

are checked when the iterator yields but not when it quits. As with routines, iter-

ators may be de�ned in abstract classes which de�ne interfaces that the compiler

checks for conformance. Iterators may then be called by object-oriented dispatch,

delaying the particular choice of iterator until runtime. This allows for abstract iter-

ation over collections without knowing the implementing data structure at compile

time.

Sather provides general non-resumable exception constructs. There is an impor-

tant interaction between loop statements and exceptions. Since a loop statement

bounds the lifetime of its enclosed iterator calls, its termination may involve some

cleanup operations. For example, when a loop exits any space allocated for iter-

ator calls must be deallocated. This terminating action of a loop statement has

to be considered when allowing non-local exits such as exception raising. For this

reason, Sather protect statements (which are similar to try statements in other

languages) may only contain iterator calls if they also contain the surrounding loop.

Similarly, yield is not permitted within a protect statement, which prevents the

creation of dynamically protected regions which overlap instead of properly nesting

in time.

4. COMPARISON WITH OTHER APPROACHES

We have discussed the ways in which Sather iterators generalize CLU iterators.

In this section we compare Sather iterators with cursors, riders, streams, series,

generators, coroutines, closures, and blocks.

4.1 Generalized Control Structures

The idea of generalizing iteration control structures goes back to early work such

as the generators of IPL-V [Newell and Tonge 1960] or the generators and \possi-

bility lists" of Conniver [McDermott and Sussman 1974]. Conniver includes activa-

tion records (called \frames") as �rst-class objects. It has a notion of pattern- or

generator-de�ned possibility lists, where \TRY_NEXT" is used to get the next value

from a list. Special tokens in possibility lists cause an associated generator to be



8 � Stephan Murer et al.

invoked. This is a means for lazily computing lists of values. A generator yields

new values and has the option of maintaining its state (\AU_REVOIR") or of quitting

(\ADIEU"), similar to the yield and quit statements in Sather. Finally, the use of

�rst-class frames allows generators to have side-e�ects in their caller environment.

This can be used to simulate variable arguments and stream-consuming iterators.

However, experience with the \hairy control structures" of Conniver has been

found to lead to unintelligible programs. We agree with Hewitt [1977, page 341]

who found, \that we can do without the paraphernalia of `hairy control structures'

(such as possibility lists, non-local gotos, and assignments of values to the internal

variables of other procedures in Conniver". As an alternative, Hewitt proposes

lazy evaluation (using an explicit delay pseudo-function). While lazy evaluation

allows for the e�ective handling of multiple recursive data structures, it also poses

a particularly di�cult problem for e�cient implementations.

The Common Lisp loop macro [Steele Jr. 1990] is a generalized iteration con-

trol structure. While it contains about every iteration primitive that the authors

could imagine (somewhat following the PL/1 tradition), all of these are built-in

features (\loop clauses") of the \Loop Facility". The language de�nition explicitly

states that \there is currently no speci�ed portable method for users to add exten-

sions to the Loop Facility". This prevents the use of the loop macro to support

encapsulation of data structure speci�c iteration procedures.

4.2 Cursors, Riders, and C++ Iterators

As mentioned above, cursor objects are a way of encapsulating iteration without ad-

ditional language constructs. Riders are a similar idea introduced in Oberon [Wirth

and Gutknecht 1992] and generalized in Ethos [Szyperski 1992]. The idea is to de-

�ne objects that point into a container class and may be used to retrieve successive

elements. Their interfaces include routines to create, initialize, increment, and test

for completion. The attributes of the cursor object maintain the current state of

the iteration. This may be as simple as a single index into arrays, or as complex as

a traversal stack or hash table recording the nodes that have already been visited

for traversing trees or graphs. Note that Ellis and Stroustrup [1990] call the use of

cursor objects in C++ \iterators".

We found that while cursors work quite well in certain circumstances, they can

also become quite cumbersome. They require maintaining a parallel cursor ob-

ject hierarchy alongside each container class hierarchy. Normally it is required to

explicitly create and garbage collect cursor objects. Cursors can be semantically

confusing since they maintain a location in a container for an inde�nite period of

time during which the container may change. Since the storage associated with

a cursor is explicit, it is inconvenient to use them to describe nested or recursive

control structures. Because cursors explicitly describe their implementation, they

prevent a number of important optimizations on inner loops.

Iterators avoid these problems of cursors, because they are a part of the container

class itself. The state of iterators is maintained only for the duration of a single

loop. Iterators may be arbitrarily nested and support recursion just like routines.

The iterator implementation manages the use of storage and can use the stack

instead of the heap unless there are multiple recursive iterators.

Finally, even though the Sather language doesn't have explicit pointers, the array



Iteration Abstraction in Sather � 9

iterators can compile into e�cient code based on pointer arithmetic.

4.3 Streams and Series

Iterators also share many characteristics with streams [Abelson et al. 1985]. One

class of iterators are those of the form \it!:T" which have a return value but

no arguments and yield a potentially in�nite stream of values. Another class are

those of the form \it!(T)" which have a single argument but no return value and

which accept a potentially in�nite stream of values. The way in which iterators

suspend and transfer control when yielding corresponds well to the lazy evaluation

semantics of streams. The main di�erence between iterators and streams is that

on each invocation an iterator must consume one input and produce one output.

Iterators are therefore always one-to-one mappings within a given loop.

The Sieve of Eratosthenes for generating successive prime numbers has been

used to show the power of the stream concept [Abelson et al. 1985, pages 267{269].

While it is a conceptually simple algorithm, the control 
ow is rather complex.

The stream solution is based on a stream which takes a stream argument and

�lters out later elements which are divisible by the �rst element. Iterators allow

the following implementation (cf. Figure 1). Note that d.divides(aprime) in the

example is a predicate that returns true if d divides aprime without remainder and

false otherwise.

sieve!(aprime:INT):BOOL is

-- Sieve out successive primes.

d:INT:=aprime;

yield true;

loop

if d.divides(aprime) then yield false

else yield sieve!(aprime)

end

end

end;

primes!:INT is -- Yield successive primes.

r:INT:=2;

loop

if sieve!(r) then yield r end;

r:=r+1

end

end

Fig. 1. Sieve of Eratosthenes

The iterator sieve tests the stream of values passed to it and yields true for the

�rst value in this stream, false for all later multiples of this value, and recursively

calls the next higher sieve for all other values. Feeding sieve with a stream of

integers starting at 2 leads to a recursive iterator that yields true only on prime

numbers. While this is not likely to be the most e�cient or pedagogical way to

implement the Sieve of Eratosthenes in Sather, it hints at the expressive power of

iterators.



10 � Stephan Murer et al.

There is, however, an important di�erence between streams and iterators.

Whereas streams may be passed around in a half-consumed state, the state of

an iterator is con�ned to its calling \loop"-statement, and even more so, to a single

call point within that loop. It is not possible to suspend iteration in one loop and to

resume it with the same internal state in another loop. A variant of Sather under

development at the University of Karlsruhe, Germany (\Sather-K" [Goos 1994])

does generalize iterators by introducing �rst class stream objects that retain their

state across loop termination.

For Common Lisp the incorporation of series, generators and gatherers has been

proposed for de�ning iterative constructs [Steele Jr. 1990]. These constructs are

complex and include a large number of built-in operations. In Sather, these opera-

tions may be implemented with iterators and encapsulated in classes.

4.4 Coroutines and Generators

A di�erent approach is to view all the iterators and the body of a loop as communi-

cating sequential processes [Hoare 1985] tightly coupled by communication channels

in the form of arguments and results of the iterators. Since there is neither pre-

emption nor true parallel execution among iterators, we may model iterators and

the loop body as coroutines [Wirth 1983].

More precisely, iterators may be thought of as structured coroutines. In many

languages, coroutines can call other coroutines in an arbitrary fashion. Structured

programming replaced the undisciplined transfer of control by \goto" statements

with structured loop constructs. Iterators are more structured than coroutines

with respect to the freedom in passing control. While a suspending coroutine may

transfer control to any other waiting coroutine, in the case of iterators the 
ow of

control is structured by the \loop"-statement. Iterators pass control back either

to the point of call within the calling loop or to the end of that loop. They are

initialized when the loop is entered and signal their return by breaking the loop.

Coroutines with this added restriction of always returning to their caller are some-

times called generators, semicoroutines, or hierarchical coroutines [Marlin 1980].

Iterators share this property. However, just as for streams, a generator's activation

state is not bound to a single call point within a single loop. Instead, a generator

may be left in a half-consumed state at one point and picked up at another. As

mentioned in Section 4.3, this is not possible with iterators.

4.5 Blocks, Closures, and Lambda Expressions

Traditionally, iteration abstraction is supported in object-oriented languages

by providing anonymous blocks [Goldberg and Robson 1985], lambda expres-

sions [Abelson et al. 1985], or closures [Sussman and Steele Jr. 1975]. The container

classes provide methods to apply a block to all or part of their elements. The ex-

ecution of such block-based iterations is controlled by the container class. With

iterators, the control is shared by the iterator and the calling loop. For example,

either the iterator or the loop body may abort the iteration.

This di�erence in control becomes apparent when trying to iterate synchronously

through multiple data structures. Consider the task of comparing the elements of

two trees according to a pre-order traversal. This is the classical \same fringe prob-

lem" as de�ned by Hewitt [1977, page 344-347]. A simple solution using iterators



Iteration Abstraction in Sather � 11

is shown in Figure 2.

class TREEfTg is

attr key:T;

private attr left,right: TREET;

inorder!:T is -- yields elements in order

if void(self) then

loop yield left.inorder! end;

yield key;

loop yield right.inorder! end

end

end;

closed inorder!:T is -- yields in order, then void

loop yield inorder! end;

yield void

end;

same fringe(other:TREET):BOOL is

-- returns whether `self' and `other' carry an

-- equal ordered sequence (\fringe") of elements

loop

e1:T:=closed inorder!;

e2:T:=other.closed inorder!;

if void(e1) then return void(e2) end;

if e1/=e2 then return false end

end;

return true

end

end

Fig. 2. The Same Fringe Prob-

lem: traversing two binary trees

in in-order sequence to determine

whether they contain the same

elements.

The iterator inorder! will yield each tree's elements in the proper order. Us-

ing a general technique for closing such iterators, iterator closed_inorder! uses

inorder! to yield the same sequence, but yields void before quitting to indicate

that the end of the structure has been reached. The same_fringe routine steps

through the elements of both trees simultaneously, stopping when it is determined

that either both trees have equal fringes, or a di�erence has been found, or one of

the trees has a shorter fringe than the other one. If the trees kept track of their

size, the closed_inorder! iterator would not be necessary.

In this kind of situation with more than one structure, it is not possible to pass

the body of the routine to one of the trees for execution. Thus, in cases requiring the

traversal of multiple structures, the use of blocks or closures is impractical, while

the situation is easily handled by the iterator construct. This approach cannot be

used in CLU, which allows only a single iterator per loop.

Closures can be used to implement generators; and multiple generators within

a common loop can be used to traverse multiple structures simultaneously. (This

is also possible in Sather using bound routines or bound iterators.) However, as

for cursors, closures have the disadvantage of an unbounded lifetime of the closure

state. While this may be compensated for by extensive compile-time analysis, the

explicit association of iterators to loops solves this problem syntactically.



12 � Stephan Murer et al.

4.6 Summary of Comparisons

1

The four constructs most commonly used for iteration are streams, cursors, built-in

looping constructs (of which the Common Lisp variant is the most complex), and

explicitly passing the loop body (as a closure, block, or otherwise).

The main points when comparing these constructs with Sather iterators are that

cursors are harder to use and less suitable for compiler-based optimizations (but

can be passed around), built-in loop constructs are not general enough, and passing

closures does not e�ectively support the simultaneous traversal of multiple data

structures. Streams and in particular generators come closest to Sather iterators,

but are not bound to a speci�c loop.

5. EXPERIENCE

The real power of iterators can only really be seen in the context of a large sys-

tem of classes. This section describes our experience with iterators in the freely

distributed Sather compiler and libraries over the last year. The Sather 0 libraries

contained several hundred classes, and iterators were used extensively in converting

them to Sather 1. In many cases, the use of iterators allowed us to discover pow-

erful new abstractions for interacting with a class. Because much of the iteration

bookkeeping now occurs in the iterator de�nitions rather than in each loop, many

classes became dramatically smaller. Iteration intensive classes such as those for

vectors and matrices sometimes dropped to less than one-third their former size!

Using iterators, the bodies of many routines could be reduced to a concise single

line of code.

Table I. Number of iterators in loops in the Sather com-

piler and libraries (does not include built-in iterators.)

Number of iterators 0 1 > 1

Number of loops 285 532 163

Percentage 29 54 17

The Sather 1 compiler is written entirely in Sather. Table I shows the number of

iterators found in the 980 loops occurring in the 1.0.7 version of the Sather compiler

and libraries, about 39000 lines of code. The built-in iterators break!, until! and

while! are not counted, and could be replaced by the traditional constructs in

other languages. The majority used at least one nontrivial iterator, validating the

importance of iterators to this code. Only 17 percent used two or more within a

loop, so CLU iterators could have been used for most cases. However, even in these

cases Sather iterators eliminate the need for a distinguished loop header and allow

iterators to be used directly as expressions, simplifying the code.

Because CLU iterators do not allow hot arguments, it isn't possible to express

iterators such as set!. Of the loops, 151 (15 percent) used one or more iterators

with hot arguments which could not have been expressed in CLU.

Cursor objects in any language have the problem that their semantics are usually

not de�ned if their container is modi�ed while they iterate. Sather iterators have the

same problem, and many of the iterators in the libraries will fail if the underlying

1

Based on a suggestion by one of the anonymous referees.



Iteration Abstraction in Sather � 13

data structure is modi�ed. There is presently no way for the compiler to detect

such situations. Inserting extra runtime checks is also problematic; one must de�ne

conditions which indicate a misuse of the container iterators, for example by setting

a 
ag while iterating and checking it whenever the container is modi�ed. In pSather

(the parallel extension to Sather) and concurrent systems in general, one has to

ensure a reader-writer locking which is appropriate to the data structure. These

solutions are tedious and error-prone. Fortunately, in our experience such bugs

have not arisen frequently in practice, although this may not hold true for novice

Sather programmers. We believe that this positive observation is largely due to the

structured nature of iterators, guaranteeing a limited lifetime of the iteration state.

Iterators are a powerful construct and it is possible to write obscure and hard

to understand code using them. The Sieve of Eratosthenes was an example of

this. Novices have had the misunderstanding that iterator calls share state simply

because they have the same name. For example, the code

loop

#OUT + elt! + ", " + elt! + "\n"

end

prints two identical columns each with all the elements of self, rather than the

elements distributed into two shorter columns

2

. Another pitfall has been the failure

to foresee that in the following code, foo is evaluated one time more than set!,

because it is set! which actually terminates the loop:{

loop b.set!(foo) end

Although we have seen these misconceptions arise in a number of individuals learn-

ing Sather, they need only be explained once.

Finally, although Sather supports higher-order functions, and hence program-

ming in an applicative style, we have found that iterators often provide a cleaner

solution. Iterators provide a convenient lingua franca for transmitting data between

disparate data structures without having to allocate space for an intermediate con-

tainer object such as an array or linked list.

6. CONCLUSIONS

We have presented Sather iterators, a new approach to encapsulating iteration, and

have shown several simple examples of their use. Iterators eliminate common errors

by combining initialization, progression and termination into one abstraction that

does not need to be managed by client code. Iterators have proven very useful in

practice, and are used extensively in both the standard Sather libraries as well as

user code. We have found that by using iterators our code becomes simpler, easier

to read, and less error prone. The interfaces to our classes become more concise

and most cursor classes can be abolished. We are excited by the simplicity and

power iterators bring to Sather and feel that other language designs could bene�t

as well.

Sather documentation and the compiler and libraries are available at

http://www.icsi.berkeley.edu/Sather

2

In Sather-K, the latter could be expressed by reusing a stream object for both calls.



14 � Stephan Murer et al.

ACKNOWLEDGMENTS

Many people were involved in the Sather 1 design discussions. Ari Huttunen in

particular made suggestions which improved the design of iterators. Jerry Feldman,

Chu-Cheow Lim, and Heinz Schmidt also made useful suggestions. Furthermore,

we would like to thank Urs H�olzle and Robert Griesemer for careful reading and

for providing valuable comments on the structure of the paper. Last but not least

we would like to thank the anonymous reviewers for numerous comments, which

led to substantial improvements in the revised version of the paper.

REFERENCES

Abelson, H., Sussman, G. J., and Sussman, J. 1985.Structure and Interpretation of Computer

Programs. MIT Press.

Ellis, M. A. and Stroustrup, B. 1990. The Annotated C++ Reference Manual. Addison-

Wesley.

Goldberg, A. and Robson, D. 1985. Smalltalk-80, The Language and its Implementation.

Addison-Wesley.

Goos, G. 1994. Sather-K. Tech. Rep. 8/94, Faculty of Computer Science, University of Karl-

sruhe.

Hewitt, C. 1977. Viewing control structures as patterns of passing messages. Arti�cial Intel-

ligence 8, 323{364.

Hoare, C. A. R. 1985. Communicating Sequential Processes. Prentice Hall.

Liskov, B. and Guttag, J. 1986.Abstraction and Speci�cation in Program Development. MIT

Press.

Marlin, C. D. 1980. Coroutines: A Programming Methodology, a Language Design, and an

Implementation. Springer-Verlag, Berlin.

McDermott, D. V. and Sussman, G. J. 1974. The Conniver reference manual. Tech. Rep.

Arti�cial Intelligence Memo 259a (May), MIT.

Meyer, B. 1988. Object-oriented Software Construction. Prentice-Hall.

Murer, S., Feldman, J. A., Lim, C.-C., and Seidel, M.-M. 1993. pSather: Layered extensions

to an object-oriented language for e�cient parallel computation. Tech. Rep. TR-93-028

(December), International Computer Science Institute.

Newell, A. and Tonge, F. 1960. An introduction to InformationProcessingLanguageV. Tech.

Rep. Paper P-1929, The RAND Corporation (presented at the ACM National Conference,

Boston, MA 1959).

Omohundro, S. and Lim, C.-C. 1992. The Sather language and libraries. Tech. Rep. TR-92-017

(March), International Computer Science Institute.

Steele Jr., G. L. 1990. Common LISP, The Language (2nd ed.). Digital Press.

Stoutamire, D. and Omohundro, S. 1995. Sather 1.1. Tech. Rep. at http://www.icsi.-

berkeley.edu/Sather, International Computer Science Institute.

Sussman, G. J. and Steele Jr., G. L. 1975. Scheme: An Interpreter for Extended Lambda

Calculus. Tech. Rep. Arti�cial Intelligence Memo 349 (December), MIT.

Szyperski, C. A. 1992. Insight Ethos: On Object-Orientation in Operating Systems, Vol-

ume 40 of Informatik-Dissertationen ETH Z�urich. Verlag der Fachvereine, Zurich.

Wirth, N. 1983. Programming in Modula-2. Springer.

Wirth, N. and Gutknecht, J. 1992. Project Oberon - The Design of an Operating System

and Compiler. Addison-Wesley.

Received : : : ; revised : : : and : : : ; accepted : : :


