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Abstract

It is difficult to achieve high performance while programming in the large. In particular,
maintaining locality hinders portability and modularity. Existing methodologies are not
sufficient: explicit communication and coding for locality require the programmer to vio-
late encapsulation and compositionality of software modules, while automated compiler
analysis remains unreliable.

This thesis presents a performance model that makes thread and object locality explicit.
Zones form a runtime hierarchy that reflects the intended clustering of threads and objects,
which are dynamically mapped onto hardware units such as processor clusters, pages, or
cache lines. This conceptual indirection allows programmers to reason in the abstract about
locality without committing to the hardware of a specific memory system. Zones comple-
ment conventional coding for locality and may be added to existing code to improve per-
formance without affecting correctness.

The integration of zones into the Sather language is described, including an implementa-
tion of memory management customized to parameters of the memory system.
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8 Introduction

Introduction

This chapter introduces the problem of building software systems that are portable, pro-
vide good performance, and yet can still be constructed without prohibitive effort. An
overview of the work is provided. The following chapters will explain in more detail the
shortcomings of the current ways such systems are built and how a new performance
model can help, while later chapters motivate, justify and explain this new model.

THE PROBLEM

It is difficult to attain high performance while programming in the large.

High performance drives much of the effort being poured into computer development.
When computer time is expensive, it makes economic sense to put a lot of expensive pro-
grammer effort into speeding up a program because it will pay off many times over, each
time the program is run. High performance is the only reason for programmers to worry
about obtaining parallelism, and often can justify the writing of specialized, single appli-
cation code designed to run on a specific machine.

Programming in the large is required when code is too large or complicated to be reasoned
about in its entirety by a single individual.

* Many codes require groups of programmers or groups of groups, and thus a way to
split up the code into modules. This way, no single individual has to understand the
entire system at once: modules can be reasoned about independently. Code that is
split up in this way, with formally defined interfaces that make it possible to know
that the system will work as a whole when the pieces are put together, is modular.

* Many codes live long enough or are important enough that they need to be main-
tained by someone other than the programmer who wrote them. In this case there is
also more than one person involved - in essence, teams of programmers are working
together separated in time. This kind of programming in the large over time introduc-
es additional requirements. The ability to understand and maintain code may be
more important than the convenience of writing it. Codes that live a long time need
to be able to run on different hardware as it becomes available; they must be portable.
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Some code requires high performance, and some code requires programming in the large.
The problem of providing one or the other has been examined in detail, and methodologies
exist for each. However, at this time it is not easy to do both at once, illustrated by the fig-
ure below. What is needed is a common methodology. The next sections examine prob-
lems that arise when trying to solve both problems at once.

Vector codes

oop

BLAS modularity

9 Programming

High Performance .
in the Large
MPI One-shot

Ao portability
applications

CORBA

Portable performance

High performance and portability are at odds. High-performance demands detailed
hardware models, while portability requires abstractions that filter out hardware details.
Both high performance and portability require extra insight and effort from program-
mers. As a result, the few high performance systems that are portable are also mon-
strously expensive in programmer resources.

Application
English English
Algorithms
Fortran + SLP Sather + zones
Program
LAPACK Class library
Libraries
BLAS Sather Runtime
Inner loops
ISA ISA
Hardware

Figure 1: Abstraction layers of programming. Each layer has an interface: on the left are the
interfaces as conceived in [6] (page 42); on the right are corresponding levels presented here.

The center column of figure 1 depicts various abstraction levels necessary for building soft-
ware. At the bottom is hardware, which is too difficult to program directly; each step
above represents a simplification of the one below, leaving out details. High performance
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requires reasoning at the lower levels. Portability must avoid reasoning at the lower levels
which change with the hardware. Design at multiple levels at once is very difficult and the
mark of a seasoned systems developer.

Reasoning at multiple levels is eased by defining interfaces that decompose the software
modules that implement upper and lower functionality. For example, programming lan-
guages isolate the details of instruction sets from upper levels, and LAPACK and BLAS [8]
isolate application code from the details of the implementation of linear algebra operations.
In this way, new lower levels can be plugged in without modifying upper levels. This ap-
proach works well for fixed applications in which a relevant abstraction of hardware can
be created.

Unfortunately, there are many applications that require algorithmic changes to achieve
high performance across a range of hardware [5]. This implies that for portable upper ab-
straction levels, the interfaces all the way up to algorithms must reflect those characteris-
tics of hardware that could guide algorithm selection. For example, Alpern [6] suggests
language level changes (space-limited procedures, page 45) to allow portable performance
across very different memory systems. More generally, portable performance requires co-
operation between all system components, including the operating system, application
code, compiler, runtime and memory management, as well as hardware. This work at-
tempts to enable this cooperation. It generalizes Alpern’s work to object-oriented pro-
gramming, and allows modeling a wider range of hardware systems, including networks
of workstations.

Modular performance

High performance and modularity are at odds. Modularity makes it possible to decom-
pose a program into smaller pieces, each of which can be reasoned about separately. Cor-
rectness of an entire program is then reduced to the correctness of each component in
isolation and the correctness of their composition. For high performance, correctness
means that in addition to producing the desired result, the program can do so without re-
quiring too many hardware resources over space and time.

Unfortunately, performance now often depends not only on what is done - the algorithm -
but also on when and where it takes place within the hardware. For example, a multiproces-
sor allows many tasks to be accomplished at once, but not if all the tasks try to run on the
same processor at the same time. Recent computer designs make this worse with new re-
source constraints, such as cache memory, that weren’t major performance bottlenecks a
decade ago. Using these resources unwisely can result in catastophic slowdowns, such as
losing all the benefits of parallelism.

Managing resources requires matching what the software needs - the resource require-
ments - with the resources available. When there is more than one software component,
the best match of software to hardware cannot be done by reasoning about one isolated
component at a time, because doing so ignores information about what resources the other
components need. So just as correctness requires formally defined interfaces, performance
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correctness requires interfaces that abstract the resource requirements of the components.
Components with such an interface can then be composed without unduly losing perfor-
mance due to poor use of hardware resources.

TOWARDS A SOLUTION

Reconciling performance, portability and modularity depends on resolving problems of lo-
cality. There are also other major problems that are not examined in this thesis; for exam-
ple, interoperability between heterogenous hardware and software components. Locality
is sufficiently difficult to warrant studying in isolation.

Cooperating for locality

The essential strategy proposed here for dealing with locality is to enable various system
components to cooperate with each other. For example, the application writer may have
an idea about the access patterns of the data structures being operated on in a program.
Meanwhile, the operating system tries to exploit locality in the page replacement policy,
and the compiler tries to improve locality in the form of optimizations such as loop fusion
and blocking. However, there is rarely any communication between these components;
each must work in isolation.

This isolation is no longer necessary. Figure 2 shows some of the ways that components
can communicate with each other. Programmers can inserts pragmas into the code - hints
to the compiler about how to do the best job - and this gives more information than is en-
coded in the program structure alone. Similarly, some operating systems accept hints
about paging, so they don’t have to guess entirely on the basis of past paging behavior.
These extra sources of information allow components to cooperate. While useful, these
hints are piecemeal, esoteric, system-specific and clumsy. What is needed is a unified ap-
proach to locality, in which communication between components isn’t point-to-point and
system specific. Locality within a component must be described in a way useful to other
components and not tied to specific hardware.

This work presents a language-level programming model that makes thread and object lo-
cality explicit, based on first-class zones. Zones form a runtime hierarchy that reflects the
intended relationships between threads and objects. The runtime may dynamically map
zones onto hardware units such as processor clusters, pages, or cache lines to best cooper-
ate with the memory system. Zones may also be used to extend memory semantics - for
example, entires zones may be deallocated at once.

Locality is attained in uniprocessors by keeping similarly accessed data together. To avoid
false sharing in multiprocessors, it is also important to keep unrelated data apart. This is
why the word ‘zone” was chosen. In a city, zones are areas in which construction, resi-
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Figure 2: Flow of information about locality. Left, information in a traditional system flows away
from the programmer, at each stage there being less to work with. On the right, a ‘modern’ system
with extra, piecemeal information flowing between components.

dence, and establishments are regulated so that they do not interfere. Careful planning of
the use of land allows a city to run smoothly. Similarly, a program must enable coopera-
tion of its threads and objects to obtain high performance.

Overview

The two chapters which follow this introduction survey the existing state of the affairs in
achieving high performance on modern memory systems.

® The following chapter, Memory Systems and Locality (page 14), reviews the organi-
zation of memory system hardware. If current trends continue, there is the potential
for severe performance problems in many applications due to poor use of band-
width. The solution to this problem is to increase the effective use of on-chip memo-
ry. When on-chip memory is in the form of a cache, the way to make more effective
use of it is through locality. Techniques are described to allow software to offer ex-
ploitable locality to the memory system without requiring programmers to adopt
new ways of thinking about code.

¢ The traditional interface to memory allocation is not sufficiently expressive to enable
portable locality. Many alternate programming methodologies have been suggested
to make the programmer aware of the performance limitations of hardware. Perfor-
mance Models (page 32) describes these and discusses their weaknesses. None of
these models makes it possible to write code that is simultaneously portable, modu-
lar, high-performance and general-purpose.
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The next two chapters introduce and explore a new performance model which attempts to
adequately address locality.

As an alternative to conventional memory management and thread primitives, Zones
(page 50) introduces the zone performance model as a way to reason about software
locality in the abstract. This makes it possible to construct modular software able to
obtain reasonable performance on disparate memory systems. The way zones are ex-
pressed in the Sather high level language and the implementation of a locality-con-
scious memory manager is described, and the effect on application performance is
examined.

For the highest performance systems, it may be desirable to expose more details of
hardware than the pure zone model allows. Extending Zones (page 81) proposes ex-
tensions to the pure model appropriate for systems with heavy penalties for poor lo-
cality, and implementation concerns when systems span more than one address space.

Conclusion (page 94) summarizes this work and suggests future avenues of research. Be-
cause this work builds heavily on Sather language and implementation at ICSI, an appen-
dix (Sather Language, page 99) provides an overview of the language concepts and
implementation.
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Memory Systems and Locality

The previous chapter, Introduction (page 8), explained problems that arise in program-
ming in the large due to locality. This chapter begins with a discussion of memory sys-
tem issues that limit application performance and an overview of hardware
improvements to memory systems that do not assume software attention to locality. It is
concluded that hardware approaches alone will not be sufficient for all applications, and
that future microprocessor performance is likely to be limited by the memory system.

The chapter goes on to discuss ways that changes to software can improve performance
when hardware solutions are not sufficient. Existing software techniques that improve the
locality of data references are reviewed; these can reduce the required bandwidth as well
as improve latency. Methods of software development that improve locality include auto-
matic compiler optimizations, manual code transformation, and attention to memory man-
agement. The techniques presented in this chapter do not require programmers to use
nontraditional languages or methodologies.

The following chapter, Performance Models (page 32), discusses models which do require

learning a new way to program, and for performance, force programmers to consider more
of the hardware.

HARDWARE

This section reviews physical limitations that limit communication between components
of computer systems. In particular, because fabrication technologies are advancing faster
than packaging technologies, performance is increasingly limited by the need to commu-
nicate with memory off-chip, rather than by a lack of processing resources on-chip. This
section reviews hardware approaches to dealing with this bottleneck.
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Going the distance

Each generation of fabrication technology has been shrinking chip feature sizes by about
0.7x, making transistors cheaper and faster. Wires connect the transistors, so wire delay
affects overall performance. Transmission delay was not a major concern for older technol-
ogies because it was a small fraction of clock cycle time. Now, as clock frequencies ap-
proach 1 GHz, interconnect delay is becoming a performance limiter and attracting the
attention of circuit designers and fabrication process technologists.

The Alpha 21264 microprocessor, for example, has a large die (~300 mm?) and a designed
cycle time of 2 ns. As a result, its functional units must be arranged such that each commu-
nicates with only one or two others. An exception is the data cache, which must work with
multiple integer units, the FPU, and the system interface. As a result, it takes two cycles to
get an address to the cache and return the data. The problem is not in the cache array itself;
access takes less than a full cycle, but there is no time to move the address or data any sig-
nificant distance across the large die [46].

Recall that wire delay may be estimated by the RC (resistance-capacitance) product.
Shrinking a chip from one generation’s technology to the next leaves the delay of wires on
a chip roughly unchanged, because the increase in line resistance from the reduced metal
cross-sectional area is offset by a reduction in line length. However, overall die size and
wire length are increasing rather than decreasing over time. Everything else held equal,
for a fixed wire length the delay has been doubling with each generation.

Over the last few generations, technology improvements have kept the actual delay in-
crease closer to 1.3x. The number of metal layers has been increasing by about 0.75 per gen-
eration. The wire aspect ratio has also been improved by about 0.22x per generation,
reducing resistance. However, the number of metal layers will become impractical at
around 10 in 2-4 generations, and continuing to increase the aspect ratio ratio will not bring
much improvement because of increased capacitance and crosstalk [13].

Other technologies for reducing interconnect delay are on the horizon. Silicon dioxide is
the standard dielectric in use today; a material with a higher dielectric constant would re-
duce capacitance, with the best alternative providing about a factor of two. The aluminum
presently used for interconnects might be replaced by copper, which has about half the re-
sistivity. Each of these improvements (more metal layers, improved wire aspect ratio, bet-
ter dielectric, better conductor) may produce a constant improvement in interconnect,
pushing back limitations for a small number of generations. Ultimately, however, these
constant factors cannot compensate for the larger circuits being created. No matter what
exotic technologies arise in the future, the speed of light will ultimately force the highest
performance computations to respect distance, and locality will have to be respected in de-
sign.

Regardless of what is happening inside of chips, present technologies impose an addi-
tional severe penalty for communicating between one chip and another. Figure 3 com-
pares microprocessor performance with corresponding pin bandwidth over time.
Although this ratio also reflects changes in processor design, it is clear that bandwidth
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Figure 3: MIPS divided by with aggregate pin bandwidth (log scale, from [21])

from a chip to its environment is not increasing as fast as interconnects within the chips
are. This gap is only likely to widen, because in addition to the electrical issues faced on-
chip, packaging technologies also have to deal with heat dissipation and assembly con-
straints. With today’s single chip processors, this delay shows up in the number of cy-
cles that a processor needs to talk to memory and other processors. The effect of this
increasing distance to memory has been most dramatic in the behavior of memory loads
and stores. The next section looks at ways this changing behavior has affected processor
designs.

Uniprocessor issues

Performance is lost when processing operations stall, wasting the opportunity to do work.
This may occur because a memory operation was not issued sufficiently ahead of an oper-
ation that depends on it, in which case that operation is latency-bound. If the memory op-
eration stalled because other memory operations congested a resource such as a shared
bus, the dependent operation is bandwidth-bound [21]. The following sections describe
hardware techniques for avoiding operations bound by latency or bandwidth.

Reducing latency

The latency penalty can be reduced by faster interconnects or increasing bus speed. Unfor-
tunately, memory access times have been improving 5-10% slower per year than processor
speeds. Another way to reduce latency is to move some accesses to memory that is faster
because it is smaller and closer to the CPU. For example, register files are tiny, multi-port-
ed on-chip memory small enough to be managed by the compiler.
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Registers reside in a distinct address space from main memory. It is also possible to have
an addressable fast memory (Cray-2), but this usually takes the form of a cache. Cache
memory is managed by hardware which attempts to recognize systematic memory access-
es. Future accesses are anticipated by keeping recently accessed data and, typically, spec-
ulatively prefetching words that are close to recent accesses. This is possible because the
sequence of addresses is usually far from random; for most applications there are exploit-
able patterns. Three particular patterns of access often receive special hardware support:

Temporal locality exists when the same location is referenced closely in time. This
is exploited by attempting to keep recently accessed locations in the cache.

Spatial locality exists when addresses are referenced which are close to previous
addresses. This is exploited by prefetching, loading nearby regions of memory
into the cache instead of individual words, in the expectation that they will be
needed soon.

Streaming accesses are equal to a previous address plus a stride. This is common
when accessing array data, and is exploited by predicting the stride and fetching
locations ahead of the accesses, another kind of prefetching.

Processors typically interleave several address streams, one of which is an instruction
stream. Instruction accesses are typically (but not always [85]) highly predictable; they
universally warrant handling with a separate specialized cache. Instruction caches will
not be considered further, and all mentions of cache should be understood here to mean
either a data cache or a unified data and instruction cache.

Caches have proven so useful that most microprocessors employ multiple levels of cache,
even within a chip, as well as other forms of cache such as virtual memory translation
lookaside buffers (TLBs) and paging to memory from disk. Levels are denoted L1, L2, etc.,
as the size increases and bandwidth and latency deteriorate. Caches are organized as some
number of blocks. Each block may hold a copy of a range of memory, and often ‘block” is
used to refer to the represented range. The capacity, or size, of a cache is the number of
blocks times the number of bytes in the block.

Figure 4 demonstrates the effect of different cache levels on latency for three microproces-
sor systems. Average latency is measured as an aligned array of memory is strided through
with each load dependent on the previous. As the size of the array increases, it ceases to
fitin each level of cache and the latency rises. The block size can be inferred from the shape
of the curve as the stride increases; there is exploitable locality when the stride is smaller
than the block size, but once each access touches a new block, there is no longer any benefit
to the cache at that level and there is an inflection point.

Caches can reduce latency only to the extent that the hardware prediction strategy is accu-
rate, which depends on the program and input data. Cache utility can be optimized for a
given workload by careful attention to trade-offs of size, associativity, and replacement
policy. The transparency of caches comes at the cost of making it difficult for a system to
treat cache memory as a resource to be carefully managed, as these hardware mechanisms
come into play when accessing memory whether they are wanted or not [20]. (MIPS pro-
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Figure 4: Average latency (vertical) for increasing array size (left to right) and stride. Size and
stride are in bytes, log scale.

cessors [56], for example, make it possible to turn off caching on a per-page basis and to
access cache memory directly, but to date these operations require supervisor mode and
are not given operating system support.)
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Cache terminology

The placement policy describes the heuristics used to associate blocks with regions of mem-
ory. This is usually broken down into the associativity and the replacement policy. The asso-
ciativity describes the restriction that the hardware places on which address ranges can be
copied into which cache hardware block. Fully associative caches can place any (aligned)
range in any block; direct-mapped caches can place a given region in only a single block; and
n-way associative caches can place a given region in one of n blocks. Caches may be indexed
with virtual addresses or physical addresses. In physically indexed caches the placement of
regions to blocks is affected by the virtual-physical mapping, so their behavior can be de-
pendent on page placement in the operating system [15][48].

The replacement policy must decide which blocks to throw out to make room for more re-
cent data. The region containing data pushed back out to slower memory is a victim. The
choice of victim ranges from random replacement to least-recently-used (LRU) replacement.
Sometimes blocks are divided into subblocks, which allow portions of the block to be left in-
valid. Streaming caches prefetch blocks ahead of the accessed block, either given an explicit
stride or just assuming it is small. A set of memory locations which make up most memory
accesses is called the working set; being able to hold the entire working set in the cache in-
dicates it is being used effectively.

Additional hardware is often used to improve effective latency or bandwidth. Write buffers
hold outstanding write requests, waiting for opportunities in which a bus would otherwise
be idle to commit the write. The write buffer does write-merging if it is capable of combin-
ing multiple writes to the same memory region without requiring additional transactions
with the next level. Some systems augment a low-associativity cache with a small higher-
associative victim cache. A multi-port cache can support multiple simultaneous accesses. A
pipelined cache can support multiple overlapping transactions, and when misses don’t stop
other transactions from proceeding, it is lockup-free.

Tolerating latency

When reducing the delay is not enough, latency may be masked by performing other op-
erations while memory transactions are pending. The minimum memory system parallel-
ism required to tolerate latency is given by a restatement of Little’s Law for queueing
systems:

parallelism = latency x bandwidth

For example, a processor with a peak bandwidth of 1 GB/second to a memory with a
round-trip latency of 100 nS must keep at least 100 bytes worth of memory transactions
pending at a time to hope to utilize that bandwidth. Of course, if computation is to be per-
formed on these bytes, the processor must have sufficient internal parallelism to keep up.

In original implementations of the MIPS-I instruction set, the result of a load is not valid
for the following instruction, an example of an architectural concession to tolerating laten-
cy. MIPS-II added interlocks, removing the necessity of an architected load delay, but still
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requiring the compiler to be aware of the delay for instruction scheduling [56]. More recent
machines go much further, allowing multiple outstanding loads and reordering of instruc-
tions. A variant of advance scheduling of loads is explicit prefetching, in which an instruc-
tion orders that a block should be brought into the cache without tying up a register with
it. Processors may also speculatively execute code that depends on memory data. Good
instruction generation for processors with lockup-free caches, speculative and out-of-order
execution and prefetching is difficult [76].

At a coarser grain, latency can be hidden by switching threads of control whenever there
is sufficient latency. When network latencies are on the same order as a conventional con-
text switch, this is difficult to make pay off. There are efforts to architect extremely fine-
grain context switches in new designs [93] but at the time of this writing this is not widely
available, although some architectural support for fast context switching is. For example,
the ultrasparc [90] has limited support for using register windows to hold multiple con-
texts. Multiple contexts can unfortunately result in a larger combined working set, which
can reduce cache effectiveness [94].

Vectorization allows a compiler to generate aggregate instructions which operate on large
numbers of independent data items. Because they are independent, memory operations
can be pipelined to tolerate latency. Vectorization is only useful when the program is writ-
ten in terms of data parallel operations or the compiler is able transform the original code
into data parallel operations. Vector microprocessors are a simpler and less expensive way
to obtain parallelism for these vectorizable problems than superscalar techniques [98].

Dealing with limited bandwidth

While either caching or allowing multiple pending memory accesses help with latency,
only caching also helps to reduce bandwidth. While latency can be tolerated by allowing
outstanding operations at the instruction or thread level, this has the effect of making op-
erations that were latency-bound become bandwidth-bound because the total number of
non-local memory accesses remains the same. Techniques of speculative prefetching can
aggravate the bandwidth problem by moving extra, irrelevant data across the pin bottle-
neck. Eventually increased latency due to insufficient bandwidth must become a barrier
to performance [21].

Without a revolution in interconnect technology, bandwidth can only be addressed by
transferring less data across chip boundaries. This requires increasing the size of on-chip
memory or managing it more effectively. Even caches with perfect use of on-chip memory
will still require compulsory memory accesses due to I/O and interprocessor communica-
tion, so systems that can tolerate latency by clever caching are also eventually bound by
bandwidth [103].

Supercomputers historically solve the bandwidth problem with full crossbar intercon-
nects, many banks of fast RAM, and other aggressive, expensive solutions. The bottleneck
may be avoided in the cheaper microprocessor market by finding a way to move more
memory onto the processor chip itself, perhaps by integrating DRAM. This will improve
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the applications which can achieve high performance because they fit within a chip. How-
ever, there will always be the need for I/O, multiprocessor communication, and larger
working sets than will fit within a single chip.

A radical proposal for improving off-chip bandwidth is compression, increasing effective
bandwidth at the expense of extra hardware on the CPU and in RAM. Thisis already pos-
sible at an operating system level for paging [35] but is not presently feasible at a low level.
The constant of compression that can be achieved appears to be quite small.

The only feasible bandwidth solution is to place more memory on chip, as in a cache. Cach-
es relieve bandwidth to the extent that locality of access allows it, so the performance of
applications which are bandwidth limited and not vectorizable will be directly limited by
the locality present. In a study of SPEC benchmarks, Burger [21] found that between one
and two orders of magnitude in effective bandwidth could in principle be obtained by
more effective use of the cache. Locality is even important for applications that do not ex-
ercise interprocessor communication. Each processor of a Cray T3D has a potential read
bandwidth of one 64-bit word every four clock cycles, or 320 MB/sec. The actual band-
width achieved may be as low as 28 MB/sec, with up to 42 instructions in the time it takes
to read a single local DRAM location [68].

Multiprocessor issues

The previous sections showed that poor use of on-chip memory has become performance
limiting on serial codes. This section describes how multiprocessing and distributed! com-
putation affect memory system performance, further increasing the importance of locality.

There are two potentially complementary ways that processors may communicate. One is
through hardware emulation of shared memory, and the other is with explicit messages
operating as a separate mechanism from memory. Systems are increasingly combining
both, with shared memory clustering small numbers of processors that are then linked by
a distinct network.

Distributed systems

Low latency networks are now available that make it economically attractive to connect
uniprocessors or shared-memory multiprocessors into larger computational systems.
These networks can be used to provide a shared memory abstraction using stock hardware

1. In the high performance computing literature, ‘distributed’ is used to refer to computation which occurs across
processing nodes within a single system for the sake of parallelism. In other literature it is sometimes used to in-
dicate computation which occurs on separately administered systems, for example, client-server access to a da-
tabase. The former meaning is intended in this work; issues of security or fault tolerance are deliberately avoided.

In a similar confusion of terms, ‘multiprocessor’ is sometimes used to mean cache-coherent shared memory (as
opposed to software distributed shared memory). Here the term multiprocessor just means any plurality of pro-
cessors.
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[71[25][57] or extra hardware [61]. There are many commercially available systems now us-
ing the clustered approach of small cache coherent multiprocessors connected by a distinct
low latency interconnect.

An efficient shared-memory abstraction can be built on top of explicit message-passing
hardware with compiler support. The hardware burden can be eased by exploiting com-
pile time knowledge about references [60]. The ultimate performance of such systems is
dictated by how much useful knowledge the compiler and runtime can extract about access
patterns; the advantage of doing as much as possible at compile time instead of with hard-
ware is that such analysis is essentially free. In the following chapters, networks requiring
explicit message operations are considered part of the memory system if these operations
are managed by the compiler and/or runtime rather than the programmer.

Cache coherent shared memory

Efficient distributed shared memory is often emulated by allowing ranges of memory to
be replicated in the caches of multiple processors. Copying data increases the effective
bandwidth to that data, multiplying the bandwidth of a single cache by the number of
processors. But when the data is modified, the copies must remain coherent, either by in-
validating all but one copy or by speculatively updating all of them. There is a rich liter-
ature on ways to implement this [63], with various performance trade-offs [42][80].

10 uS 10 uS
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5 threads 5 threads
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Figure 5: The effects of bus saturation (left) and false sharing (right).

For design simplicity, many commercially available cache coherent systems use a single
fast bus connecting a small number of processors, each with one to three levels of local
cache. A single shared bus presents a bandwidth bottleneck that is aggravated by adding
more processors. Figure 5 demonstrates this for a Sparcstation 10 with four Ross Hyper-
sparc processors on a shared bus. This program forks some number of threads that follow
a random pointer tour of a common region of memory of a fixed size in the same manner
as [80]. As multiple threads are added that access the same memory, performance roughly
scales with the number of executable threads until the working set exceeds what can be
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kept in each processor’s cache. For the Ross hypersparc modules seen here, this occurs at
the cache size of 256KB, after which performance stops scaling with the number of threads
because the shared bus is saturated.

There are theoretical results that many algorithms are asymptotically limited by total band-
width rather than parallelism. In particular, it has been shown that for a sufficiently large
fixed problem size, sorting is limited only by available bandwith, not by the number of pro-
cessors - an infinite number of processors will not help [1].

To eliminate this bottleneck, shared memory is better implemented using a general net-
work, so that bandwidth scales with the number of processors. On such a machine, the
sharp knee seen as size proceeds past 256K would still appear, but overall performance
would at least be able to scale with more parallelism.

In addition to intrinsic bandwidth demanded by the application, cache coherent machines
can suffer from additional memory traffic caused by false sharing. This occurs when one
processor modifies a location which is not subsequently read by another processor, but still
causes an invalidation or update message because it accesses the same cache block. On the
right of Figure 5 is a timing graph for the same system, but this time touching each location
once during the tour. No thread ever writes a word of memory touched by another thread,
but the system is now unable to scale with the number of processors because of the traffic
false sharing induces. Although this result was obtained on a shared bus machine, the
same behavior would be seen with any kind of interconnect. The congested resource is not
any piece of hardware, but a logical span of addresses. The only solution here is to attempt
to rewrite the application so that memory written by multiple processors does not reside
on the same cache line; this requires that the programmer, compiler, and/or runtime antic-
ipate the hardware caching policies and avoid abusing them.

A bandwidth comparison

Figure 6 plots peak 64-bit floating-point performance against bandwidth as measured by
the STREAMS triad microbenchmark [67]. This Fortran microbenchmark computes
a; < b; + s*c; for arrays larger than the cache size of the machine being tested, and the code
is structured so that data re-use is not possible. This tests the memory system’s effective
throughput. Each point in the figure represents a multiprocessor announced between 1992
through 1996; these are divided into shared memory (cache coherent), distributed memo-
ry, and vector machines. Since the triad microbenchmark is representative of long vector
operations, it can be expected that vector machines will do well. The feature of greatest in-
terest is whether the point is above or below the line; machines falling below the line are
limited by bandwidth to memory rather than floating point performance.

The shared memory machines all have less available bandwidth than most vector or dis-
tributed memory machines. The highest performance shared memory machines come no-
where close to the highest performance distributed or vector machines. The line represents
the minimum bandwidth needed to sustain the vendor’s claimed peak floating-point rate.
In contrast to shared memory machines, most vector machines fall near the line; they have
the best balance of memory system to floating point for this benchmark. (The one distrib-
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Figure 6: Measured bandwidth (vertical in MB/s) vs. claimed peak Mflops (horizontal) for the
STREAM triad benchmark (data from [67]).

uted outlier near the line represents a single processor Meiko CS-2, a hybrid system which
has vector hardware within each node, but uses distributed explicit messaging between
nodes. With only one node, this could be considered a vector machine.)

Consistency models

The preceding sections outlined a few reasons that multiprocessors tend to use caches
less effectively than uniprocessors. Luckily, multiprocessors also present an opportunity
to ameliorate the effects of cache misses not available to uniprocessors.

When there is only a single thread, memory is a simple thing: a memory cell or variable
always has the last value assigned to it. However, when there is more than one thread of
control and no explicit synchronization, the order in which a thread sees the writes of an-
other thread isn’t well defined - depending on thread scheduling, one thread may race
ahead of the other and write values that are subsequently read, or it may instead be forced
to idle. Because programmers can’t be assured of any particular order that the threads will
execute, they also aren’t guaranteed an ordering on memory accesses.
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Conventional languages don’t have threads, so the behavior of memory isn’t hampered by
legacy semantics. The nondeterminism of thread scheduling makes it possible to define
new semantics of memory access. It is advantageous to give the programmer as few guar-
antees about memory order as possible so as to give the implementation the most flexibil-
ity, enabling higher performance. The guarantees a multithreaded system makes to the
programmer about the behavior of memory are called the memory consistency model. The
consistency model applies to both message passing and cache coherent machines. The im-
plementation of the model may be in hardware, controlled in software by the compiler and
runtime, or both.

The most intuitive consistency model is sequential consistency, in which all memory opera-
tions are guaranteed to appear to occur in some order consistent with the execution of each
thread. The implication for a cache coherent system is that each memory operation - a read
or a write - must appear to complete before another can be started. This model is the easiest
to reason about.

A common alternative is processor consistency (used by Intel multiprocessors [53] and oth-
ers). Write buffers were introduced on page 19 as a hardware technique to allow other op-
erations to continue while writes complete. For uniprocessors, the programmer can’t tell
whether or not there is a write buffer (other than timing): when a read occurs to a location
waiting to be written to, the write buffer steps in and provides the newest value. For mul-
tiprocessors, writes may sit in the write buffer and not be immediately visible outside the
processor. Processor consistency guarantees only that the order of writes from a single pro-
cessor will always appear in order, not that the interleaved order of writes from different
processors appear the same. This allows the write buffers to be used; under sequential con-
sistency they could not.

Release Acquire

Thread A Thread B

Figure 7: The acquire-release consistency model. Another processor or thread is not guaranteed to
observe changes until the writer has performed a release and the reader has performed an acquire.

Processor consistency allows processors to continue working without waiting for writes,
but what about reads? Program order between threads is defined only by events which re-
quire synchronization, such as waiting for a barrier; this suggests having synchronization
actions play a role in the behavior of memory. A model offering still weaker guarantees
than processor consistency is release consistency, which requires writers to explicitly release
their updates to memory and readers to explicitly acquire these changes before guarantee-
ing they will be observed (figure 7). These releases and acquires are usually automatically
associated with synchronization actions in a program by the compiler inserting special
memory instructions at these points. For example, if releases occur when threads enter a
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barrier and acquires occur when they leave, all threads will see all changes by other threads
at the time they resume execution. This allows processors to continue working through
both reads and writes - until a synchronization event occurs.

Weakening the consistency model in these ways allows processors to keep working after
initiating a memory operation without always waiting for it to finish. This can improve
performance; for example, Sather uses a weakened consistency model (page 122) similar to
release consistency that has be used to enable significant optimizations on distributed sys-
tems [42]. The down side is that programmers may only use explicit synchronization to
control program order between threads. Memory order may behave in a nonintuitive way,
making program behavior more difficult to reason about. The next chapter will describe
other serious software engineering difficulties these weaker models create.

SOFTWARE

Cache hardware tries to exploit regularities in the pattern of memory accesses to reduce
latency and improve effective bandwidth. Now we examine ways that software can be
constructed to capitalize on the hardware by offering as much exploitable regularity as
possible.

Fetching of entire cache blocks surrounding an accessed location is a form of speculative
prefetching based on assumptions of spatial locality. This trades effective bandwidth for
latency toleration. Most instruction sets provide some support for software controlled
speculative prefetching as well; for example, non-faulting load instructions and loads
that bring data into the cache without binding the result to a register [90]. Insertion of
these instructions may be considered a code generation problem, often only useful in
combination with software pipelining. These techniques tend to consume bandwidth.
Since bandwidth is expected to become a performance limiter, this chapter does not con-
cern itself directly with prefetching transformations, instead concentrating on reducing
required bandwidth by reducing cache misses.

Why misses happen

On current processors the speculative prefetching of entire cache blocks by hardware is
nearly unavoidable. Although prefetching negatively affects bandwidth, the degree to
which it does so is affected by the spatial organization of data. The ratio of traffic passing
through a cache to the traffic it handles provides an accurate measure of how on-chip mem-
ories affect bandwidth [21]. Because this work does not speculate on alternate cache con-
figurations, the cache hit rate will be considered an adequate measure of bandwidth
reduction for a given block size with a direct impact on application performance. We now
examine what causes caches to miss.
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A taxonomy of misses

Misses at any level have elsewhere been categorized as compulsory, capacity, or conflict [62].
Compulsory misses occur when accessing data which was not previously in the cache. Ca-
pacity misses are a result of accessing more data than can fit in the cache. Conflict misses
occur when the placement policy victimizes blocks. While it has proved useful for unipro-
cessors, this taxonomy has two unacceptable inadequacies: it doesn’t address misses that
result from cache coherence interactions, and conflict misses are given a clumsy definition
in terms of LRU replacement. A much cleaner definition may be made in terms of a (fic-
tional) optimal replacement.

Here an alternate taxonomy is presented:

Compulsory misses are a result of accessing data that is not in the cache. This
means accesses to locations when they are visited for the first time, or I/O.

Coherence misses arise from a processor reading a location which would have
been in the cache, but was invalidated by another processor writing to it.

Capacity misses are those that a perfect cache could not have avoided. A perfect
cache has the same capacity and block size, but is fully associative and has an op-
timal replacement policy (the block is victimized which is needed furthest in the
future). Such misses cannot be blamed on associativity or replacement policy.

False sharing misses occur when a block is invalidated by another processor
which did not write to the location being accessed. On coarse-grain SPLASH
programs, misses due to false sharing comprise 40 to 90 percent of all misses for
a variety of block sizes [54].

Conflict misses are everything else.

This treatment of misses fails to model bandwidth issues on systems that use speculative
update rather than invalidation protocols, because formally no coherence or false sharing
misses occur. In practice, the bandwidth consumed by an invalidation protocol tends to be
similar to that of an update protocol [65], although latencies may be strikingly different.

Reducing misses

There are two ways to reduce misses by program transformation: changing where data is
placed, and changing when it is accessed. Here a list of policies is presented, each of which
may have benefits at various levels of the memory system.

Alignment is arranging of data items which are used together to stay within
block boundaries. This may mean padding objects to a multiple of the block size
and allocating aligned to block boundaries. Alignment may reduce compulsory
misses by prefetching other object fields. Capacity and conflict misses may be re-
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duced by always loading the fewest number of blocks needed to contain the ob-
ject.

Clustering is arranging for data which is used closely in time, or by the same
thread(s), to be allocated within the same block. Clustering is implicit in the lay-
out of objects as contiguous fields. Small objects may be clustered on the same
cache line, and related objects may also be usefully placed on the same page or
node. Clustering may reduce compulsory misses by prefetching objects before
they are used. It may reduce coherence traffic by placing objects within the same
processor. Capacity misses may be reduced by having more relevant data in
each block, and conflict misses are reduced for the same reason - there are more
free blocks around. ‘Locality” is usually taken to mean clustering.

Zoning is the complement to clustering: deliberately placing data that is not used
closely in time or by the same threads in different blocks. Zoning has largely
been ignored in uniprocessor cache analyses, but can impact performance on
multiprocessors, reducing false sharing by not allowing objects used by different
processors to reside on the same block.

Reordering refers to code transformations which change the order in which data
is accessed, such as loop fusion, interchange, and blocking. These transforma-
tions are well understood [11] and unassisted compiler transformations have
been very successful at reducing capacity misses on some codes, especially
dense linear algebra.

Individual transformations may help implement more than one policy; for instance, pad-
ding may be used to simultaneously implement alignment and zoning. It should be un-
derstood that misses are being used in a way not restricted to cache coherent machines. For
example, a Cray T3D allows reads and writes from remote nodes, but does not cache these.
Although there is no cache involved, remote accesses are still misses in that they contribute
to required bandwidth and can be avoided by better placement of data. On systems with
explicit messaging, ‘misses’ can be interpreted as the overhead incurred by the compiled
code and runtime to deal with messages.

There is plenty of room for improvement in existing systems by applying these policies: in
a trace-driven study, Markatos [65] found that effective memory access cost on a hypothet-
ical coherent machine could be reduced by one to two orders of magnitude on scientific
codes by optimal placing of data through off-line analysis. Good placement was much
more important than the details of the coherence protocol.

Locality maintenance

This section describes conventional ways that locality can be improved by compiler opti-
mizations, feedback guided manual code transformation, or adaptation at runtime.
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Compiling for locality

Many compiler optimizations, such as register allocation, redundancy elimination and
loop invariant motion may be viewed as potential locality improving transformations.
They can reduce the number of memory accesses and non-register variables. Because
these optimizations are well understood they are not considered further here.

There is a large literature on improving the locality of loops over array data, which will
only be briefly mentioned here. Nested loops can be interchanged to decrease stride.
Skewing changes the array layout to improve stride for affine access patterns of multidi-
mensional arrays. Blocking or tiling performs matrix operations by dividing them into op-
erations on subblocks, each of which may fit in the cache. The granularity of computation
can be improved to enhance temporal locality by combining operations from independent
iterations of a loop into composite operations. These operations must be combined in a
common framework that is informed of the target memory system characteristics for best
effect [11, 23]. In addition to blocking transformations already discussed, on some ma-
chines the predictability of strided access can be exploited by the compiler to take advan-
tage of read-ahead prefetching, page-mode RAM, memory interleaving, and special
stream hardware.

Code transformations have also been applied to linked-list traversal, which are frequent in
programs written in functional and logic languages. When the last word of an object points
to the following object, the pointer may be omitted by placing the objects together. More
generally, pointer data structures can often be replaced by arrays. This change in represen-
tation improves locality by reducing space consumed and clustering related items. To get
the best effect, loops have to be unrolled and it must be possible to rule out aliasing [84].
Memory management and related cache behavior of the application also substantially af-
fect the results [9]. It is unclear how far automated analysis can be taken with more com-
plicated data structures although some analysis is possible in simple recursive structures
[79].

Because compiler optimizations often depend on non-local dependency analysis, they vio-
late compositionality of the performance model. For example, a loop transformation may
be possible if the compiler can show that two pointers can’t alias the same region of mem-
ory. Proving whether they do so may require analyzing all code reachable from within the
loop. This can cause minor code changes to have performance consequences that propa-
gate to seemingly unrelated parts of the application.

For uniprocessor systems, failing to optimize will generally bring a small constant factor of
performance loss. On multiprocessors, however, the wasted time may not only be multi-
plied by the number of processors, but coherence effects may introduce very different as-
ymptotic behavior. An application that scales linearly with the number of processors may
change into one with no scaling at all because of placement decisions that result from sub-
tleties of optimization that are not apparent to the programmer.
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Manual transformation

Manual code transformations can be effective when automated techniques fail [62].
Identifying which data structures are responsible for poor cache behavior requires know-
ing their layout in memory, the processor(s) reference pattern and details of the architec-
ture and coherency protocol. For this reason good source-level tools are essential, but at
this time such tools are rare.

Jeremiassen [54] found that manual restructuring of data placement could reduce false
sharing misses by up to 75% on sample coarse-grain programs. Automated code transfor-
mation was generally more successful, eliminating on average 64% of false sharing misses
and up to 90% for programs that had been manually transformed. The most successful op-
timization was simply padding locks so that modifications to critical region variables did
not cause loss of exclusive block ownership.

Locality at runtime

There are off-line, runtime approaches to obtaining locality. For example, solving differ-
ential equations on unstructured meshes is frequently handled by a preliminary phase
which determines how data structures will be mapped and the scheduling of work and
data movement which takes place in a subsequent execution phase. The preliminary
phase may either be done off-line or considered part of the execution [91]. This approach
is sensible when the cost of the preliminary phase is small compared to the overall compu-
tation.

However, there are many problems in which the data structures, communication, or sched-
uling cannot be reasonably predicted in a separate phase. For such irregular problems
[101] it is necessary to actively maintain locality, allowing parts of the computation to pro-
ceed before an optimal placement or schedule can be obtained. Here we examine locality
solutions for irregular problems that cannot be solved adequately by compilation or pre-
liminary analysis.

Because the placement of objects in memory directly affects cache behavior, there has been
investigation into the effects of memory management algorithms on locality. Locality ef-
fects due to memory management are often hard to distinguish from raw application local-
ity; when they can be, the results are hard to translate between languages, compilers, and
memory systems [102]. There is consensus on two points: memory management algo-
rithms themselves exhibit poor locality, and relocating garbage collection can improve lo-
cality under some conditions.

Grunwald [45] found that the cache locality of common malloc/free memory allocators
can be quite poor, generally trading off better fragmentation policy for poorer reference lo-
cality in the allocation routines. In a later study of conservative garbage collection Zorn
[106] found that there was often an implicit cost to explicit memory management. For ex-
ample, reference counting is extremely common in C++ programs. However, updating ref-
erence counts stored with the referenced objects on every pointer assignment touches the
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cache blocks of those objects, on which data may not even be referenced otherwise. It was
concluded that because it may improve the reference locality of the application, conserva-
tive garbage collection should be considered even when performance is the primary goal.

Some garbage collectors are able to relocate objects after allocation; these can improve lo-
cality by clustering objects that refer to each other. Another study of the locality effects
of garbage collection showed that copying collection can improve the application locality
in large Lisp systems. However, for direct-mapped caches, mark-and-sweep collection it-
self showed much better locality [105]. Copying garbage collected systems with high al-
location rates appear very sensitive to whether cache lines are forced to be allocated on
the first write to a non-allocated block, because most writes occur to untouched space for
which prefetching brings no benefit.

Bonwick [17] found that systematic alignment of Unix kernel data structures to powers of
two could reduce cache effectiveness due to associativity. To resolve this, arrays of objects
were artificially padded to spread out their alignment. This demonstrates one way in
which the alignment policy (page 27) can fail. Austin [10] explored the use of profiling
feedback to divide allocation sites into sets, with demonstrable reduction in conflict misses.

Operating system support for handling of process scheduling, paging and TLB replace-
ment policies has been extensively studied [28][95]. Two heuristics that improve locality
are giving a process affinity for the processor where it last ran, and increasing the duration
of the time slice itself. Burger [19] examined the impact of conventional page fault han-
dling on massive multiprocessors, concluding that such systems require gang scheduling
and other modifications. Automatic page migration schemes have been proposed which
try to migrate pages to processors incurring cache misses on that page, including a variety
of software-only distributed shared memory implementations [7]. Cao [22] describes the
design of a file system that integrates application-controlled caching, prefetching, and disk
scheduling.
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Performance Models

The previous chapter, Memory Systems and Locality (page 14), reviewed techniques that
can be used to obtain locality without changing the way programmers have to think about
the systems they build. While successful for particular classes of applications and specific
hardware, these automatic techniques have not been able to obtain optimal performance in
general. This chapter reviews performance models: ways that programmers can reason about
performance when trying to build systems which meet the above goals. Unlike the tech-
niques of the last chapter, using a performance model to obtain locality sometimes requires
programmers to think in nontraditional ways, making it possible to build systems which
are not oblivious to the performance characteristics of the underlying hardware.

This chapter begins by reviewing common performance models that are in practical use as
well as more academic models that have been proposed. Recall that the goal of this work
is to enable high performance and programming in the large at the same time. Require-
ments mentioned in the introduction (page 8) included:

1. High performance - performance must scale with larger/faster hardware and de-
grade gracefully under additional software load,

2. Portability - correctness and performance must persist when hardware changes,

3. Modularity - correctness must persist and performance must be predictable when in-
dependently written software modules are composed,

4. Usability - structure, coding techniques, and implicit assumptions should be clear
and available so that code can be reused, extended, and maintained. Applications
should be not restricted to narrow domains such as scientific computing.

None of the models meet all of the goals above, but two models here are of particular in-
terest because they pave the way for a new model. The low-level Parallel Memory Hierar-
chy model (page 42) allows accurate description of hardware by distinguishing not only
clusters, but hardware units at other levels of the memory hierarchy as well. The Sather 1.1
distributed extension (page 47) is a higher-level model which presents a view of hardware
as a collection of clusters of processors; all memory accesses within a cluster are inexpen-
sive, while memory accesses between clusters are expensive. The next chapter, Zones
(page 50), describes a new performance model which combines the high-level convenience
of the Sather distributed extension with the expressive hierarchical approach of the Parallel
Memory Hierachy model.
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PRIOR MODELS

This section reviews prior work on performance models by classifying each as implicit, ex-
plicit, or annotative. The most common performance models for general purpose program-
ming are implicit - that is, the factors that most affect performance are not reflected as
features in the language and programming environment. Instead, the programmer is
taught how to infer performance effects based on knowledge of how compilers, runtimes,
and hardware operate. Other performance models are explicit, requiring message sends,
absolute placement or restricting the available kinds of synchronization. Recent languages
have had annotative locality models which allow the expression of locality to be indepen-
dent of the correctness of code.

This section covers practical models actually applicable to large software systems. A sub-
stantial and largely disjoint body of literature covers mathematical models used for com-
plexity analysis of parallel algorithms (eg. PRAM, LogP [33]). These performance models
are of greater theoretical than practical interest so are not discussed here.

Implicit models

Caches and coherent shared memory are a way to lighten the programmer’s burden by
doing extra work in hardware. Cache hardware has evolved to make the best use of the
kind of code that compilers generate (i.e. a specialized stack) and compilers have co-
evolved to generate the best code for existing caches. As a result, there are performance
conventions that are implicit. Although cache systems are programmed as if they have a
uniform flat address space, in practice programmers have learned programming idioms
that result in improved memory system performance. The performance expected of
these idioms have becomes no less important than any formal language specification.

Common assumptions

Expert programmers have learned to rely on automatic local register allocation, invariant
code motion, constant propagation and common subexpression elimination. Program-
ming is extremely tedious without such optimizations and reduces the usefulness of com-
mon practices such as macro expansion. Similarly, many languages require garbage
collection for applications to not overconsume memory but do not require it formally since,
by definition, it has no semantic consequences.

Compiler loop optimizations such as unrolling cannot always be relied on, but there are
other characteristics of code generation for arrays that are trusted. Compilers are expected
to allocate arrays in contiguous memory. On a cache coherent machine, this means that
generally, locality of access in the array indices will translate into fewer cache misses. It is
possible, for example, to perform manual blocking of matrix operations without knowing
the exact cache organization of the target. Going from a general notion of improved local-
ity to optimal blocking for a given memory system is non-trivial [30].
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Compilers are similarly expected to lay out object fields in contiguous memoryZ. The im-
plication is that once a field is accessed, subsequent accesses to other fields of the same ob-
ject provide locality. In [62], for example, one beneficial code transformation is the
combination of multiple arrays of related data into a single array of structures. Similarly,
local variables (and often arguments) of a single method can be expected to occupy a con-
tiguous stack frame.

Thread abstractions can usually be assumed to provide locality within threads, but not be-
tween them. For example, two threads operating on an array may each benefit from the
locality of their own accesses to the array, but suffer when each accesses the same area at
the same time. This is an example of implicit zoning. On some systems the performance
conflict between threads has erupted into relaxed memory semantics, with explicit consis-
tency models that require programmer attention to points of synchronization [42, 59].

Multiple threads make the best use of the cache if the time a thread runs before blocking is
large relative to the penalty of reloading the cache. The interleaved execution of many
threads effectively combines their working sets, reducing cache effectiveness. It is impor-
tant to schedule threads to take advantage of cache affinity [12].

Hill and Larus [50] describe four abstract models of caching useful for programmers who
know little or nothing about hardware and are programming with explicit placement of
threads among processors:

1. No caches - non-local communication can only be reduced by eliminating memory ref-
erences, such as by keeping results in registers. (Note that this relies on implicit mod-
els expected of compilers to be able to reason about what will be in registers.)

2. Infinite word caches - Block size is a single datum, and there are only compulsory and
coherence misses. Once a location is read it remains local until another processor
modifies it.

3. Infinite block caches - Block size is known but there are an infinite number of blocks;
there can be false sharing misses.

4. Finite block caches - Block size and cache size is known, so there can be capacity misses
as well. Optimizations for fixed cache size must be stressed less than for uniproces-
sors, since changes that reduce cache misses can increase false sharing.

The problem with implicit models is that they are a moving target. As compilers and mem-
ory systems have changed, programmers expectations have had to as well.

What is wrong with malloc and free?

Implicit performance models that depend on locality are influenced by memory manage-
ment. Most languages and systems provide a means to explicitly allocate and deallocate
memory; in C, this is done with the routines malloc and free. By any name, the conven-

2. ...although there are major differences between languages in treating layout and object-oriented inheritance.
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tional interface to object allocation fails to address modular and high-performance goals.
Malloc encourages thinking of memory as flat, and free introduces an obscure but severe
problem in multiprocessor systems.

The previous chapter detailed ways that memory isn’t really flat - where data is placed
does affect how long it takes to access. Conventional allocation doesn’t allow the program-
mer to express that objects should be kept together or apart. Even programmers that know
about the memory system can’t use malloc to their advantage, because it doesn’t allow
alignment to cache lines or pages to be expressed. Similarly, it doesn’t permit the expres-
sion of affinity between threads and objects. While alternative interfaces to allocation are
sometimes available (eg. memalign, which extends malloc with an alignment requirement),
they fail to be portable across memory systems.

In addition to these problems, explicit deallocation can cause nonintuitive failures when
combined with weakened consistency models. Suppose the code of the left column of table
1 runs on a system with either sequential or release consistency. A programmer might rea-
sonably conclude that the only possible simultaneous values of g and g.field are (a, 1), (b,
2) and (¢, 3). The race condition between the assignment of g and the observance of its val-
ue should not affect this: each assignment to the global g is atomic, so even if later values
of g aren’t observed, at the very least the values of g.field should still always be consistent
with the value of g.

Sequential consistency Release consistency
Code
== g.field == == g.field ==
object a, b, ¢;  -- local variables
global object g; -- a global variable
a = malloc(...);
a.field = 1;
g=a;
... another thread is forked here ...
b = malloc(...); a 1 a 1
b.field = 2; a 1 a 1
g= b; b 2 b 2
X  free(a); b 2 b 2
¢ = malloc(...); b 2 b 2
* c.field = 3; b 2 b 2
g=c: c 3 c 1

Table 1: Stale values appearing under release consistency.

Under sequential consistency, other threads observing the global state of memory will ob-
serve the values in the second two columns. Under release consistency, the memory occu-
pied by object a may be reclaimed by the explicit deallocation (indicated by the X) and
reused for object c. Since this memory may be in another processor’s cache and there has
been no acquire to flush it, this could lead to another thread observing the old value for
g.field - the value belonging to a, an object that no longer exists!
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How can this problem with release consistency be avoided?

® Have a compiler insert acquires. If the observing thread performs an acquire before ac-
cessing g.field, the newest value would be seen instead of the stale one. Solving the
problem this way would require an acquire before every dereference of a pointer to
global memory that might have been reclaimed by a deallocation. While conceivable,
this will result in a potential acquire inserted before every read unless some kind of
aggressive global analysis is used, defeating any performance advantage of release
consistency. Even if compiler analysis can help, programs could be slowed down by
unbounded factors by adding an unfortunately placed explicit deallocation.

* Give free a semantics of flushing remote copies. Instead of requiring the reader to flush
their copies, perhaps the processor reusing a deallocated region could somehow flush
all remote copies. A problem with this is that there isn’t any way to do it - acquire and
release events don’t affect remote processors. If there is some way of flushing remote
caches, doing so for every deallocation could get expensive.

* Don'’t use explicit deallocation. This whole problem is caused by not having a one-to-one
relationship between program variables and memory - when memory is reclaimed,
old program variables might be seen. If the deallocation marked by X were simply re-
moved, the problem would go away because memory would never represent more
than one program variable. But most programs do need reclaimation of memory.

A fourth alternative is to combine the second and third options with garbage collection.

Garbage collection

Widely used imperative languages such as C, C++ and Fortran 90 require the program-
mer to explicitly manage dynamically allocated storage. Good programming practice
suggests making procedures locally responsible for related data structures. Unfortunate-
ly, memory management issues often cut across natural abstraction boundaries, making
interfaces unpleasant in having to include low level deallocation issues.

A programmer doing explicit storage management may mistakenly free an object while it
is still being referenced, leading to a dangling reference. A programmer may also forget to
free memory even when there are no references to it, leading to memory leaks. Both mistakes
can be very hard to detect because their malevolent consequences may show up unpredict-
ably, far away in space and time from the actual origin of the error; perhaps only with par-
ticular input data or on particular platforms. These problems are severe enough that a
small industry has arisen to provide tools to help C and C++ programmers find such bugs
(Purify). C++ classes often use manual reference counting techniques to provide a crude
form of reclamation, but these fail with reference graphs containing cycles. They also intro-
duce substantial performance hits by greatly raising the cost of pointer assignments and
decimating locality of reference.
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For these reasons, many languages are garbage collected, so programmers never have to free
memory explicitly. The runtime system does so automatically when it can be proven to be
safe. With explicit deallocation this work is done by the programmer, although such explic-
it storage management often has little effect on performance [106]; it is rarely worth the ef-
fort or complexity.

There are good software engineering reasons to use garbage collection, but it also can pro-
vide a solution to the stale-value dilemma of the last section. Instead of flushing remote
copies for every call to free, garbage collection can flush remote cached copies of memory
that it reclaims all at once. This isn’t likely to have the same performance problem as asso-
ciating flushes with every free, because garbage collection is occasional and coordinated.
Remote copies only have to be flushed once per garbage collect cycle, not once per object
freed.

Garbage collection does not entirely prohibit explicit deallocation; the programmer can be
allowed to manually deallocate objects, letting the garbage collector handle the remainder.
This allows garbage collected languages to be used even given tight constraints such as real
time systems. It is also possible to treat such explicit deallocations as assertions so that the
system will catch dangling references from manual deallocation before any harm can be
done. When such checking is done, the program cannot crash disasterously or mysterious-
ly. All sources of errors that cause crashes are either eliminated at compile-time or funneled
into narrow circumstances (such as accessing beyond array bounds) that are found at run-
time precisely at the source of the error. This approach is used by the Sather language.

Various types of garbage collection carry their own implicit models of locality. For exam-
ple, the additional memory system load of garbage collection can reduce the apparent ben-
efit of modifications to applications to improve their internal locality. Copying garbage
collection may encourage programmers to believe that objects that refer to one another are
more likely to be close in the heap and thus provide a measure of locality [49].

Explicit models

The implicit performance models discussed in the previous section require that the pro-
grammer think on two levels. One level is essentially syntactic - constructs such as rou-
tines, variables, and objects that make up the language used to express the program. At
the same time, the performance-minded programmer must understand how these con-
structs map into the time and space of hardware - the performance semantics. Hiding
the performance from the programmer in this way is both a weakness and a strength.
Implicit models make attaining performance harder by not allowing expression of perfor-
mance characteristics of the code directly, but they allow portability by not commiting to
the performance characteristics of a particular platform.
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In contrast, explicit models deliberately expose more of the performance characteristics of
the hardware to the programmer. This can be done by having the programmer specify the
dependency structure of their code (explicit dependence), or by having the programmer
use constructs that directly correspond in time and space to the executing hardware enti-
ties (explicit communication).

Explicit (in)dependence models

Rather than requiring explicit placement of each data item, a variety of systems attempt
to automate placement based on explicit dependence information extracted by the com-
piler or provided by the programmer. This is done at a fine grain with data parallelism,
and at a coarse grain with explicit dependence.

Data parallelism in the form of vector operations was already discussed in the context of
compiler optimizations. Vectors make explicit the independence of data elements, allow-
ing benefits of parallelism and pipelining with little hardware complexity. For programs
composed of vector operations, vector microprocessors may provide an inexpensive way
around latency and bandwidth issues without resorting to design-intensive out-of-order
superscalar processors with massive on-chip cache [98].

Data parallelism allows compiling away the need for synchronization checks at runt-
ime. In vector operations, there is no communication between individual element opera-
tions, but with compiler support this can be relaxed, allowing more general code than
vector processing. For example, Modula-2* [75] offers parallel constructs which synchro-
nize on every statement, as well as constructs which allow decoupled, asynchronous exe-
cution of statements in SPMD fashion.

Jade [78, 81] is a coarse-grain, deterministic system which attempts to schedule tasks on the
same processor as other tasks that accessed some of the same objects. Jade was built on top
of SAM [82], a runtime that does implicit software caching of remote values, enabled by
immutable (versioned) object semantics.

Data parallelism is appropriate for problems which can be naturally decomposed into in-
dependent operations. Most scientific programming is of this form, but there are other im-
portant domains - such as compiling, simulation, and some database management - which
do not decompose naturally in this way.

Explicit communication models

There are a number of libraries that may be used with C or C++, providing a shared ad-
dress space and synchronizations [Presto, ANL macros]. A typical runtime library consists
of multiple light-weight tasks that execute in the same address space, communicate
through shared memory, and synchronize through constructs such as locks, barriers, and
atomic regions. These libraries tend to not handle locality well. In the ANL macros, the
only support provided for locality are primitives to lock a process to a processor or allocate
data from a processor.
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Non-coherent systems require explicit message libraries such as PVM [41], MPI [34] and
AM [36]. Rather than a shared address space, these libraries provide primitives for sending
and receiving messages with a variety of related synchronization. Additional facilities are
required for placing and distributing code and data and managing I/O. Libraries can be
built on top of message passing to encapsulate regular communication and synchroniza-
tion patterns (eg. BSP [97]). It is desirable to provide a hardware abstraction such that
threads and synchronization do not directly interfere with the expression of communica-
tion. Ideally, synchronization should be orthogonal to placement.

Instead of programming directly using these libraries, some languages use them as a com-
pilation target and reflect locality in the type system. Split-C [32] is typical, distinguishing
local pointers and far pointers to data on remote nodes. Attempts have also been made to
model side-effects directly using types [43], though with little practical application.

CRL [55] and Shared Regions [40] allow the binding of variables to regions with explicit
control of consistency; explicit actions are required to bracket read or read /write access.

Explicit messages often require the programmer to violate encapsulation and composi-
tionality of software modules, so the various forms of explicit communication appear via-
ble only for wizardly high performance programming or simple tasks. These models also
assume the memory system has at most three levels relevant to performance - local mem-
ory and remote memory and sometimes local cache.

Annotative models

Fortran has a brave tradition of interpreting comments as compiler hints, allowing opti-
mizations that may require more analysis than a compiler is otherwise capable of. Divid-
ing a language into a core and performance-affecting annotations can ease code
development, because a correct program can be written before worrying about efficien-
cy. Often there are directives that can affect correctness but do not if used in the intended
way.

In High Performance Fortran (HPF), a serial program may be annotated with data distri-
bution specifications. A variety of primitives are provided for this including distribution
patterns such as interleaved, round-robin, blocked, cyclic, alignment, and dynamic distri-
bution. HPF annotations are used by a compiler to extract and schedule parallelism and
communication from a serial Fortran program. Along with concurrent computation prim-
itives, the data distribution annotations may be used by the compiler to partition the pro-
gram into parallel activities based on an owner-computes rule. Both data and machine are
abstracted as multidimensional grids, but mapping is performed at only a single level of
the memory system, implicitly depending on the compiler for other locality.

There are a number of object-oriented languages that have annotative constructs for place-
ment. Emerald [52] was designed for distributed environments and has mechanisms for
specifying the location of objects. Objects may be fixed to other objects, but if unfixed they
may move at the system’s discretion. Itis possible to query an object’s fixed or unfixed sta-
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tus, and find out what it is fixed to. Objects may be moved on demand. When objects can
be moved on demand, access to them must go through an indirection, which penalizes per-
formance even when objects do not move.

In COOL [29], calling a function prefixed with the keyword parallel forks a thread to exe-
cute the function asynchronously. Like many systems, hardware is abstracted at two lev-
els, a local memory with a cache and remote shared memory. COOL uses a form of object-
affinity scheduling that runs the thread on the processor whose memory holds the invoked
method’s object. Optionally, affinity to other objects may be specified. Object affinity co-
locates threads with an object. Task affinity schedules threads back-to-back. Simple affin-
ity is a combination of object and thread affinity, co-locating a thread with an object, sched-
uling all such threads back-to-back. Processor affinity specifies which processor a thread
will run on. Objects may be allocated from a particular processor, and migrated on de-
mand, although this moves the entire page with possible unrelated objects as well. A con-
struct allows array distribution. Finally, the current processor holding an object can be
queried. Chandra [27] reports moderate success with improving performance of SPLASH
benchmarks on the DASH using these affinity annotations. COOL has the liabilities of ab-
stracting hardware at a single level and nonportably involving page size in migration be-
havior.

Prelude [99] also allows explicit migration of threads and objects, depending on compiler
analysis to generate code that is not impacted by indirection between object migration.

Fowler [38] implemented a task-queue with an object-affinity runtime that was able to im-
prove performance of parallel programs at a granularity too fine for thread-based cache af-
finity to be effective.

The Check-In/Check-Out (CICO) model [51] allows bracketing code with directives that
indicate when shared or exclusive access to data begins and ends. This is superficially sim-
ilar to inserting coherence primitives in software cache-coherent systems such as Shared
Regions. Data is expressed in terms of blocks with explicit address ranges, and CICO does
not attempt to manage synchronization.

Zhang [104] explored replacing the implicit prefetching of long cache lines with short lines
and explicit prefetch control, relying on the compiler and programmer to annotate groups
of variables. These variables can then be prefetched together by hardware which recogniz-
es special bits associated with each line.

CASE STUDIES

Models are now examined in greater detail which motivate the zones model presented in
the next chapter. Models of register use have arisen through which portable and modu-
lar performance has been achieved. The Parallel Memory Hierarchy model is explicit,
and important because it allows simultaneous reasoning about multiple levels of the
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memory hierarchy. The last model examined here, the Sather 1.1 distributed extension, is
high-level, annotative, and distinguished by its careful codesign with a high level lan-

guage.

Portable performance with registers

Registers make up the first and best understood level of the memory hierarchy. We will
now examine the explicit, annotative and implicit models that arose to address the perfor-
mance issues of registers.

In assembler languages, all register use and memory access is explicit. The precise timings
of individual instructions might be abstracted away to allow reimplementations of the in-
struction set, but a specific timing model is never far away, often right alongside the assem-
bler reference manual. So in assembler, the performance model must be considered
explicit.

C has an annotative performance model for registers. Local variables may be declared with
the keyword register. The only semantic effect to this annotation is that it allows the com-
piler to complain if the programmer attempts to compute the address of the variable. C was
designed at a time when many compilers weren’t able to do a good job of register alloca-
tion, so this hint by the programmer could be a large win for carefully designed inner loop
code.

More recent compilers can do a better job of register use than programmers can with rea-
sonable effort. Most compilers now ignore the register hint and do register assignment as
if it weren’t there, because it turns out not to matter. Programmers who understand that
this is how modern systems work are using a performance model that is implicit.

The model of register use can make a big difference. For example, a programmer may con-
sider unrolling a loop to allow latency tolerance through improved instruction scheduling
in larger instruction blocks. There are also other advantages to unrolling loops, such as to
amortize the per-iteration overhead over more than one iteration. The number of iterations
to unroll depends strongly on the number of registers available; if the loop is unrolled too
few times, registers may remain unused and cause memory latency to be a bottleneck. If
the loop is unrolled too many times, more registers may be required than exist and register
spilling - moving values back and forth between registers and memory to compensate for
too few registers - may occur. That makes a tradeoff between having the limited resource
be memory latency of the number of registers. This relationship is illustrated in figure 8;
the exact curve would depend on many things, such as the quality of the compiler, icache
structure, and what the operations in the loop body are. Although more inflection points
may appear due to other resource constraints, the overall shape will be similar.

Given that the number of registers and other factors influence the optimal unrolling, it is
clear that the very highest performance code can’t be made portable without information
about the hardware. And yet, programmers do manage to write high quality portable inner
loops, by using compilers that are capable of making the right decision and carrying out
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Figure 8: Loop unrolling versus performance. The highest performance is obtained when neither
too many nor too few registers are used.

the unrolling for the programmer. This can be done portably and with modularity if the
language being programmed exposes loops and their performance as a built-in, available
language feature. Programmers now expect compilers to optimize simple loops, and this
has become part of the performance model.

The moral is that portable performance can be obtained, but it can require the programmer
to understand and use language (or compiler) features relevant to the mapping of software
to hardware, rather than having them attempt the mapping themselves. The programmer
talks to a portable mapping facility (in this case, the compiler), expressing the structure of
the software to it rather than asking about the hardware and adapting the software.

Parallel Memory Hierarchy model

This section reviews the Parallel Memory Hierarchy model. This is a low-level model, with
no notion of threads or objects; however, this model makes it possible to reason closer to
the hardware while still allowing the hardware to be abstracted to enable portable high-
performance code. This ability to express locality at many levels at once is missing from
the Sather distributed extension presented in the following section.

Abstracting the hierarchy

In the PMH model [3] a parallel computer is modeled as a tree of hardware nodes. Each
child is connected to its parent by a unique channel. Interior nodes hold data and leaf
nodes can perform computation. Data in a node is partitioned into blocks, the unit of trans-
fer on the channel connecting a node to its parent. All the channels can be active at the
same time, although two channels cannot simultaneously move the same block.
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Each node has four parameters: block size, block count (how many blocks fit in the mod-
ule), child count, and transfer time (how many cycles it takes to transfer a block between
the module and its parent). All modules at a given level are expected to have the same pa-
rameters. In the PMH model, the cost of communicating a message is always a step func-
tion of the message length. The transfer time parameter can be chosen so that the step
function approximates a more accurate model such as latency /bandwidth.

Level Block Size | Block Count | Transfer Cost
Disk 4K 64K -
Main 512 12K ~1K
TLB 512 128 ~0.06
Cache 16 512 ~0.9
Registers 1 32 1

Table 2: PMH parameters for RS6000 Model 530 memory Hierarchy

Table 2 shows the parameters associated with a single RS6000 workstation, in which the
descriptive PMH tree has no branches. Notice that the TLB can be modeled as a level of
the memory hierarchy, although the transfer cost is abnormally low since only addressing
information must be moved, not the data itself. This workstation could be connected to
others with a network (as in an SP-2), forming a proper tree.

The p-processor PRAM model is a special case of the PMH model with only two levels, a
root representing all of memory with p children, each with unity block size and transfer
time. PMH differs from other hierarchical models such as H-PRAM by allowing data to be
stored in the interior nodes of the tree. This allows the same structure used to model com-
munication to model the memory hierarchy.

However, PMH is not limited to describing coherent machines. Figure 9 shows two PMH
trees associated with two common parallel machine organizations. The tree on the left de-
scribes a system in which bandwidth to disk is greater than network bandwidth. In such
a system, parallel processing will be limited by the bottleneck of the network. On the right
is a system in which the network bandwidth is greater than the bandwidth to disk. The
root of the tree represents the combined storage capacity of all the disks, hiding the differ-
ences between a workstation’s local disk and the other workstations” disks. PMH implic-
itly assumes full association and complete control over the replacement strategy.
Generally, memory in PMH may be manipulated explicitly; there is no distinction between
addressable local storage and cache storage.

Making the memory hierarchy explicit can be useful for characterizing serial programs as
well. Another model, UMH (Uniform Memory Hierarchy), is a variant of PMH that as-
sumes fixed ratios of block size and transfer time between parents and children, and can
be used for asymptotic analysis of communication induced by the memory system for both
serial and parallel algorithms [4].
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Figure 9: Two trees describing common parallel platforms (from [3]). Dimensions of each block are
drawn to be propotional to the log of the block size and count.

Having more than two levels has several consequences. The UMH model focuses attention
on the intermediate levels of storage, raising questions about the proper way to subdivide
problems. It is also more natural for asymptotic analysis since a single machine can handle
problems of all size.

Carter [24] presents hierarchical tiling, a methodology for using PMH to recursively map
scientific computations to multiple levels of the memory system. Many efficient hierarchi-
cal algorithms for solving numerical problems have recently emerged [26].

A hierarchical model is not appropriate for all systems, and possibly least accurate in de-
scribing mesh architectures in which the latency is proportional to the number of hops.
The PMH must model a two dimensional mesh as a tree in order to reflect the O(./P ) bisec-
tion bandwidth out of a square of P processors. There will be processors that are adjacent
in the mesh but far separated in the tree, so a conservative PMH model may not be able to
model systolic array algorithms well. PMH was developed for supercomputing applica-
tions, and like CICO, assumes that it is reasonable to describe data as blocks. There is also
no provision for threads or non-array data.
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Space-limited procedures

Alpern proposes an ambitious development methodology for high-performance portable
programming called space-limited procedures [6], in which the call graph for generic pro-
grams for the PMH model directly reflects the PMH tree structure. Multiple versions of a
procedure may be called on, depending on machine and problem parameters. Procedure
arguments may further use a stream representation. Normally, procedure arguments re-
side in the module for the duration of the procedure invocation, but for streamed argu-
ments the data is only moved in blocks which can be discarded or moved up to the parent
and other blocks moved down.

This is a matrix multiply written using space-limited procedures, in which an M x L matrix
A and an L x N matrix B and multiplied to obtain an M x N matrix C:

matrix multiply:0 (C[0:M-1, 0:N-1]; read A[0:M-1, 0:L-1], B[O:L-1, 0:N-1])
assert L<1 or M<1 or N<1
priority highest
return

matrix multiply:1 (C[0:M-1, 0:N-1]; read A[0:M-1, 0:L-1], B[O:L-1, 0:N-1])
assert L=1 and M=1 and N=1
C[0,0] := C[0,0] + A[0,0]*B[0,0]
return

matrix multiply:2 (C[0:M-1, 0:N-1]; read A[0:M-1, 0:L-1], B[0:L-1, 0:N-1])
assert L>1 or M>1 or N>1
letl=L/2, m=M/2,n=N/2
cobegin

matrix multiply (C[0:m-1, 0:n-1], A[0:m-1, 0:-1], B[O:I-1, O:n-1]);
matrix multiply (C[0:m-1, 0:n-1], A[0:m-I, 0:L-1], B[I:L-1, 0:n-1])

I
matrix multiply (C[m:M-1, 0:n-1], A[m:M-1, 0:I-1], B[0:I-1, 0:n-1]);
matrix multiply (C[m:M-1, 0:n-1], A[m:M-1, I:.L-1], B[l:L-1, 0:n-1])

matrix multiply (C[0:m-1, n:
matrix multiply (C[0:m-1, n:

N-1
N-1
Il
matrix multiply (C[m:M-1, n:N-1], A[m:M-1
matrix multiply (C[m:M-1, n:N-1 m:M-1
coend
return

Each version has a guard assert statements which define its eligibility to be executed. The
first two versions of the procedure handle the base cases when the matrices are degenerate
or 1 x1. The third handles the general case by breaking up each matrix into quadrants and
recursively solving the eight matrix multiplication subproblems.
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There’s nothing particularly interesting about the above procedures, but the next two ver-
sions show additional language features that are unique to space-limited procedures.

matrix multiply:3 (C[0:M-1, 0:N-1]; read A[0:M-1, 0:L-1], B[0:L-1, 0:N-1])
assert L>1 or M>1 or N>1
assert M*"N+M*L+L*N <= #this.capacity
assert Mstride*Nstride+Mstride*Lstride+Lstride*Nstride <= #child.capacity
hint Mstride ~ Nstride; Lstride ~ 2*Mstride; Lstride ~ 2*Nstride
priority medium high
for m from 0 to N-1 by Mstride in parallel
for n from 0 to N-1 by Nstride in parallel
for | from O to L-1 by Lstride in pipeline
let mm = min(M,m+Mstride), nn = min(N,n+Nstride), Il = min(L,|+Lstride)
matrix multiply (C[m:mm-1,n:nn-1], Alm:mm-1,L:lI-1], B[l:ll-1,n:nn-1])
return

This version breaks up highly rectangular problems into more balanced subproblems. It
uses the tuning parameters #this.capacity and #child.capacity, which are specific to the
hardware the program executes on, which Mstride, Lstride and Lstride are free parameters.
The hints express desired relationships between the parameters, but the compilation/exe-
cution process may determine them dynamically.

The last version uses stream data; instead of requiring space for the entire arguments for
the duration of the procedure, only space for their footprints is needed. When one foot-
print is no longer needed, it is discarded, or in the case of a result, moved up to the parent
and another footprint’s worth of data is brought down. In this example, the #registers pa-
rameter guarantees that a small block of the original C matrix resides in registers, while a
horizontal swath of A and a vertical swath of B are accessed as streams.

matrix multiply:4 (C[0:M-1, 0:N-1]; read A[0:M-1, 0:L-1], B[O:L-1, 0:N-1])

assert L>1 or M>1 or N>1
assert M*"N+M+N <= #registers
priority very high
hint L large; M ~ N; M, N as big as possible
stream A, B with footprints a[0:M-1], b[0:N-1]
for | from 0 to L-1 in pipeline

a=A["l], b=B[,"]

for m from 0 to M-1 in parallel

for n from 0 to N-1 in parallel
C[m,n] := C[m,n] + a[m]*b[n]

return

Space-limited procedures allow different versions of software to be executed depending on
the abilities of the executing hardware. However, it should be clear from these examples
that space-limited procedures are very low level; it is difficult to conceive of their use for
maintainable general purpose code. The zones model presented in the next chapter tries
to remedy this by allowing expression of locality at the much higher object and thread lev-
el.
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Sather 1.1 distributed extension

Sather is an object-oriented language that supports parallel threads of execution as well as
a distributed extension. The Sather 1.1 specification presents a core language definition and
a set of language extensions. The core language is always implemented, while the exten-
sions have hardware or software requirements that make them inappropriate for all plat-
forms. Altogether there are five language extensions: C and Fortran interfaces, threaded
parallelism, synchronization, and distribution. An overview of Sather is provided in the
appendix on page 99, with the threaded, synchronization, and distribution extensions
specified in detail. The distributed extension is also summarized here.

The Sather 1.1 distributed extension is much higher level than the PMH model presented
in the previous section; with a single language mechanism, it provides ways to explicitly
assign threads and objects to hardware entities. However, it is only able to express locali-
ty at the highest level, in terms of clusters. Locality of threads in time cannot be ex-
pressed to enable locality-conscious scheduling, nor can locality at finer granularity such
as placement on pages and cache lines.

Language features

The memory performance model of distributed Sather has two levels. The basic unit of lo-
cation in distributed Sather is the cluster. The programmer may assume that reading or
writing memory on the same cluster is significantly faster than on a remote cluster. A clus-
ter corresponds to an efficient group in the memory hierarchy, and may have more than
one processor. For example, on a network of workstations a cluster would correspond to
one workstation, although that workstation may have multiple processors sharing a com-
mon bus. This model is appropriate for any machine for which local cached access is sig-
nificantly faster than general access.

At any time a thread has an associated cluster id (an INT), its locus of control. Until modified
explicitly, the locus of thread remains the same throughout the thread’s execution. When
execution begins, the main routine is at cluster zero. The locus of control of a child thread
is the same as the locus of its parent at the time of the fork.

The locus of a thread may be explicitly moved for the duration of the evaluation of a meth-
od call by using the binary ‘@’ operator. An expression following the ‘@’ must evaluate
to an INT, which specifies the cluster id of the locus of control the thread will be at while it
evaluates the preceding method. When iterator calls are on the left side, each iterator eval-
uation may be placed differently on successive iterations. The ‘@ notation may also be
used to explicitly place forked body threads of fork and parloop statements.

All reference objects have a unique associated cluster id, the object’s location. When a refer-
ence object is created by a thread, its location will be the same as the locus of control when
the new expression was executed. A reference object is near to a thread if its current location
is the same as the thread’s locus of control, otherwise it is far.
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Expression Type Description

here INT The cluster id of the locus of control of the thread.

where(expression) | INT The location of the argument. If the argument is void or an immutable

type, it returns ‘here’.

near(expression) BOOL true if the argument is on the same cluster as the executing thread. If
the argument is void or an immutable type, it returns false.

far(expression) BOOL true if the argument is not on the same cluster as the executing thread.
If the argument is void or an immutable type, it returns false.

clusters INT Number of clusters. Although a constant, may not be available at com-
pile time.
clusters! INT Iterator which returns all cluster ids in order, O through clusters-1.

Table 3: Built-in expressions for location in the Sather 1.1 distributed extension.

There are several built-in expressions for location given in table 3. In addition to these
built-in expressions, the with-near statement asserts that particular reference objects must re-
main temporarily near. The statement specifies local variables that are asserted to be near
while execution remains in the statement body. When checking is on, all assignments to the
variables may be tested to make sure this remains true; when checking is off, the compiler
may elide code that might otherwise be generated to handle the far case.

Examples

This code creates a object and then inserts it
into a table, taking care that the insertion
code runs at the same cluster as the table.
(The “#’ is typed object creation.)

table.insert(#FO0) @ where(table);

To make sure the object is at the same clus-
ter as the table, one could write

or, equivalently but in parallel:

This code recursively copies only that por-
tion of a binary tree which is near. Notice
that ‘near’ returns false if its argument is
void.

loc: := where(table);
table.insert(#FO0 @ loc) @ loc;

fork @ where(table);
table.insert(#FOO)
end

near_copy:NODE is
if near(self) then return
#NODE(Ichild.near_copy,
rchild.near_copy)
else return self
end
end
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The distributed extension to Sather is an example of an annotative model in which threads
and objects are explicitly placed on clusters of processors. Explicitly placing objects and
threads does not affect the semantics of the original code, but it is also possible to deliber-
ately change the original flow of control (ie. using with-near). It is useful as a reference point
in language design because many other distributed languages have a similar approach.
This design is a precursor to and will be contrasted with the zoned extension which is de-
veloped in the following chapter. The zones model can be viewed as a hybrid of the Sather
distributed extension and the lower-level, higher performance PMH model.
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Zones

The previous chapters reviewed some of the problems posed by portable, modular high-
performance systems. Memory Systems and Locality (page 14) reviewed the organization
of memory systems and software techniques that try to make the best use of memory sys-
tems without requiring programmers to change their ways. The problems that locality cre-
ates are too severe for these techniques to handle alone. Performance Models (page 32)
reviewed alternate proposed ways to allow programmers to express or reason about local-
ity. None of these was found to support simultaneously modular, portable, and high-per-
formance general-purpose code.

The remaining chapters describe a solution to the deficiencies analyzed up to this point.
This chapter introduces the zone performance model and details how zones are ex-
pressed in the Sather language. The zoned extension provides a level of symbolic indi-
rection between software entities and the hardware they are ultimately mapped to. In
this approach the programmer meets the system half-way, coding with special locality
annotations that the compiler and runtime use to make placement decisions. With zones,
both hardware entities (contexts, processors, clusters, networks) and software entities
(objects, threads) are abstracted as trees. The way software zones are mapped to hard-
ware in one implementation is described along with performance results.

The introductory chapter (page 8) explained why it is hard to make high performance sys-
tems also portable: high performance demands attention to the details of hardware such as
timing, while portability requires abstracting precisely those details away. One way to re-
solve this dilemma is to create modular systems, where hardware specific code is encapsu-
lated behind portable abstractions. Often a compromise must be made between
abstractions at a very high level that favor portability over performance, and abstractions
at a lower level that hide most but not all details of hardware. For example, Sather without
the distributed extension (page 47) hides almost all details of hardware, while the distrib-
uted extension lets the division of the system into clusters show through to the program-
mer.

The zones abstraction can also show more or less of the hardware details. This chapter pre-
sents the simpler of two zone performance models. At the highest level of abstraction, it
hides even such coarse hardware detail as gross division into clusters of processors. The
following chapter, Extending Zones (page 81), describes how pure zones might be extend-
ed to allow more details of the hardware to be seen by the highest performance applica-
tions.
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PURE ZONES

It is now common to have multiple communication fabrics with widely different properties
within a single platform. For example, the workstation this document was typed on has:
(1) multiple on-chip register buses, (2) an intra-module bus to cache, (3) a shared coherent
bus between multiple processors, (4) a Myrinet point-to-point network between a small
cluster of workstations, and (5) switched ethernet for LAN and internet. This is not an ad-
vanced or expensive system. Many systems have more levels still.

Each of these levels can differ by an order of magnitude or more in sustainable latency or
bandwidth, so it is appropriate to make it possible to distinguish the levels explicitly. Nev-
ertheless, portability requires that the details be hidden. Previous approaches have tried
hard to compromise by finding a way to express the details of hardware to the compiler
and running program so that software entities can be adapted to match the hardware or-
ganization. Because hardware is so complicated, with each level of communication having
different performance properties, trying to make the system portable by explicitly expos-
ing all these levels would be theoretically possible but daunting to build and intimidating,
at the least, to program. Most importantly, no such portable interface exists, with PMH
(page 50) perhaps being the best attempt to date.

Structural abstraction:

Single level Hierarchical
2|2 LogP PMH
o
g o (and many others)
o | M
2
g
| o
1E
£ E Sather 1.1
| g
O <
<

Table 4: Motivating zones. PMH adequately addresses the performance implications of the
memory hierarchy, while the Sather 1.1 distributed extension adequately addresses usability.

Table 4 illustrates the problem in terms of the taxonomy of performance models given in
the previous chapter. PMH is an explicit model, handling hardware details at multiple lev-
els well at the expense of usability, while the Sather 1.1 distributed extension is annotative,
not presenting many hardware details. Zones aspire to the advantages of both.

The pure zone performance model is nonparametric: uninformed about the relative costs
of hardware operations. This enables portability, but how is it possible to obtain perfor-
mance this way? Portable performance is achieved in the same way as for registers in
loops: by creating language features available to the programmer that are mapped by
some platform specific facility onto hardware.
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We want to extend this successful idea to the general memory system, but there are addi-
tional hurdles. Registers have specific properties that make them unlike other levels of the
memory hierarchy; they cannot be addressed and are typically tiny in number, which
makes them unsuitable for storing general data structures. An approach that will work for
the general memory hierarchy must work for data structures as well. Another property of
registers is that they are not shared between threads, so although multiple threads could
be ignored in the consideration of registers, they must be considered when modelling other
levels.

The software entities being automatically mapped to hardware in the case of registers are
local variables, and the extra information passed to the mapping facility is the data depen-
dencies - for example, loop transformations may exploit the independence of values across
loop iterations. In the more general case, the software entities to be mapped are objects and
threads. It is harder to determine what additional information should be passed by the pro-
grammer to enable mapping. The information needs to be rich enough to allow the align-
ment, clustering, zoning and reordering transformations that reduce misses (page 27). At
the same time, this information needs to be sufficiently abstract and high level that modu-
lar systems can be designed and maintained.

The choice made here is staightforward and high level: objects and threads are described
using a tree, where position in the tree represents the programmers’ intuition of locality.
Instead of writing code capable of adapting to the organization of hardware, programmers
are given a way to describe the organization of their software. This moves the burden of
mapping software to hardware from the programmer to the system, where it can be done
in any necessarily system specific way. Instead of describing exact data dependencies, the
tree representation makes it possible to model approximately a hierarchy of software mod-
ules.

The pure zone model

Zones are now described in the abstract, without referring to language features beyond
objects and threads. While the zone model could be incorporated into any language capa-
ble of expressing objects and threads, the following section then describes exactly how
zones appear in the object-oriented language Sather.
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Definition
Zones may be summarized in a few sentences:

¢ A zone represents a set of objects and threads that it is said to own or contain. Zones
are themselves objects, so zones may contain other zones.

e Zones form a tree, in which the parent represents the union of its children’s objects
and threads. Objects and threads in a zone are also considered to be in the zone’s par-
ent as well as any ancestor zones. However, zones don’t contain themselves.

* Each thread, object and zone has exactly one parent zone, except for a distinguished
global zone at the root that has no parent. Hence, the global zone contains all threads
and objects other than itself.

e The cost of memory accesses is determined by the smallest zone that encloses both
the accessing thread and the object accessed. The amortised time spent for an access is
some system specific, monotonically increasing function of the total number and size
of threads and objects in that zone.

¢ Parents are always larger than any of their children: in addition to the child’s threads
and objects, they also contain the zone object of the child. This implies that if a thread
and the memory it accesses can both be arranged to be in a child, performance will be
better than if one or both were in the parent or a different child.

The first three points merely define a tree; the last two points are the important ones. They
make it possible to reason about performance based on the structure of software alone. Rel-
ative costs for different software structures are not available to the programmer, except in
terms of inequalities: reducing the number of threads or the size of memory being accessed
can’t slow things down, and will probably speed things up on most systems. However, the
cost is relative to the smallest enclosing zone, not the total number of threads and size of
objects in the program. Hence, the programmer is encouraged to place zones around
groups of threads and objects that are likely to be accessed together.
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Figure 10: Three zone structures, each expressing different expectations about locality.

Motivation

Figure 10 shows three possible zone structures and common patterns of reference that
might suggest their use. The structure on the left has all threads and objects are in the man-
datory global zone, but there is no finer structure. This indicates that the programmer
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doesn’t know of a useful way to group the threads and objects, perhaps expecting random
or uniform access. In the middle, the threads and objects at bottom are grouped away from
the objects and threads at the global level. This is the typical pattern of use for an encapsu-
lated data structure; the two lower threads and objects form their own zone, and the local-
ity properties of the data structure are not affected by the existence global thread or data
structures.

The structure on the right goes further, having the data structure itself recursively express
structure. This is how the zone model addesses modularity. In languages like the Sather 1.1
distributed model which allow only a single level of hardware division, the two data struc-
tures could not be composed without the locality annotations interfering. With the zone
model, they merely compose alongside the objects and threads.

A monotonic model is easy to justify in cache coherent systems. Increasing the number of
words being accessed generally increases the miss rate due to capacity or conflict misses.
Although there may be many levels of cache, each of them will tend to slow down mono-
tonically as the number of accessed words increases, as the three latency figures in figure
4 (page 18) demonstate. Similarly, misses due to communication and false sharing, as well
as overhead due to context switching and synchronization, tend to increase with the num-
ber of threads. The effects of bus saturation and false sharing seen in figure 5 (page 22) are
evidently monotonic. Increasing the number of threads beyond the number of processors
requires sharing processors between threads over time, again incurring some monotonical-
ly increasing overhead.

The monotonic model is a generalization of the more common threshold model used on
systems with explicit messaging, in which each memory access is either local or remote. In
effect, the monotonic timing function for distributed systems on a uniform network is a
simple threshold function. If the zone can be contained within a single node, it will be pre-
dictably fast. If it cannot because it uses too much memory or there is not enough available
parallelism at that node, it will be slower by a fixed latency.

The ‘cost’ of memory access is purposefully defined without resort to definitions of latency
or bandwidth. On a system that hides communication latency with multiple processing
contexts, it might seem that monotonicity is violated because overall costs appear to de-
crease as more threads are added. However, the cost per thread does not decrease; the
overall benefit that appears is due to increased parallelism.

One weakness of the zone model is that it relies on the notion of the size of threads and ob-
jects, which for most languages cannot be precisely or portably defined. Different imple-
mentations may have different word sizes, layout strategies, heap fragmentation behavior
and stack allocation, all of which may affect the exact definition of ‘size’ for a system. How-
ever, most systems should have sufficiently similar overheads to allow reasonable porta-
bility, given that they only need to remain monotonically related.
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Zones in Sather

We now present the second of two distributed extensions to Sather. The first was seen in
the section Case Studies (page 40), and presented a flat model of hardware: each cluster of
processors was simply identified by an integer. Here, an alternative extension replaces
clusters with zones.

Zones are first-class objects that may be manipulated in the usual ways. Zones need not
be restricted to concurrent object-oriented programming, but it is convenient to present
them that way. Here zones will be defined using Sather, in which ZONE is a primitive
class. There are built-in Sather expressions for zones as well as methods provided in the
ZONE class.

Built-in expressions

At any time a thread has a zone of execution. The zone of execution of main when execution
begins is global, that is, all hardware available to the program.

A thread can temporarily change its zone of execution through the ‘@’ operator, and may
retrieve its zone with ‘here’. ‘@’ evaluates the expression on its left side with the zone of
execution set to the zone returned by the right side. After the expression is evaluated the
thread continues with the original zone of execution. (@’ may also be used with the fork
and parloop statements to change the zone of execution of the body.)

In this code compute is invoked where a re-
sides. (Unlike some COOLs, Sather does a.compute @ where(a)
not enforce an owner-computes rule.)

All objects have a zone of residence. Unlike threads’ zones of execution, the zone of residence
of a given object can never change. The zone of residence of an object is the same zone as
the zone of execution of the creating thread at the time the object was created. The zone of
residence of an object can be queried with the built-in ‘where(x)” expression. The built-in
expressions used with zones of execution and residence are summarized in table 5.

x@y Evaluate x with temporary zone of execution y
here:ZONE The zone of execution of the executing thread
where(x):ZONE The zone of residence of the object. x

Table 5: Built-in ZONE expressions.

Because Sather threads are not objects, the phrases ‘zone of execution of x” and “zone of res-
idence of x” can be shortened to ‘zone of x” without ambiguity. Languages with first-class
thread objects would need to resolve the meaning of zone of residence and zone of execu-
tion for thread objects.
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Zone methods

Zones are objects, and may be constructed like other objects with the create method and
the associated ‘# operator. The zone of residence of a zone object is the zone of execution
of the creating thread at the time of creation. When a thread is created, it may be wise to
create a new zone to be its zone of execution: the new zone is a child of the zone of execu-
tion of the parent thread. Such a policy of always creating a new zone would attempt to
exploit the tendency of threads to operate on independent data. For example, the runtime
may interpret the new zone as a directive to avoid placing objects created by the thread
where they may cause false sharing with objects from other threads.

Some of the methods in the ZONE class are summarized in table 6. If y is the zone of resi-
dence of another zone x, then x is within y; being within is transitive. Alternately, y is the
parent of x and x is a child of y. The zone method “x.within(y)” allows this relation to be que-
ried at runtime.

create:ZONE Create a new zone, which is inside ‘here’.

within(ZONE):BOOL Test if self inside argument zone.

Table 6: Methods in the built-in ZONE class

Examples

Divide-and-conquer is a common comput-
ing strategy in which a large problem is bro-

ken into smaller subproblems that can each SRBIETEROIg)

parloop s ::= arg.subproblems!;

be solved without communication with the do @ #ZONE; - Solve in a child zone
others. Such a program has an easy map- solve(s);

ping to zones. Because each subproblem ac- end;

cesses only its own objects (and possibly end;

some global state), it makes sense to wrap
each in its own zone.

Another common recursive strategy is branch-and-bound, in which there is communica-
tion between subproblems so they do not replicate each other’s work. Communication is
typically restricted to nodes and their parents, which manage the bounds of their chil-
dren. In this case, zones still express the locality of communication, which is abstracted
as occuring within the zone of each parent.

Zones can also be applied to computations that are not tree-structured by covering the
computational structure with a tree. For example, a VLSI simulation might profitably as-
sign zones to regions of a chip and subzones to individual computational cells, abstracting
the communication requirements between components into the relative position in a tree.
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Zones are least motivated for systolic algorithms and other extremely regular communica-
tions for which existing hardware and software techniques suffice. A mesh can be covered
by a tree - in fact, many algorithms already divide spatial points using a form of divide-
and-conquer to form partitions - but that this is probably not always the best way the com-
munication requirements could be specified.

Zones are intended to complement rather than replace the carefully managed locality in
systolic, linear algebra, and FFT algorithms. Existing array-based locality techniques are
absorbed into the zone framework by abstraction into nodes of the zone tree; at worst, the
tree is just a single zone with the special-purpose code doing all the work. Arrays carry an
implicit locality performance model (see page 33), but are simply large objects as far as the
zones performance model is concerned.

Comparison with other models

The zone model attempts to combine the object-oriented annotations of the Sather 1.1 ex-
tension with the hardware model of PMH. It tries to generalize the notion of locality an-
notation to be hierarchical and support threads, as well as deal with data structures other
than arrays.

In COOL and Emerald, locality is specified by giving threads or objects affinity with other
objects. Zones differ by being hierarchical; it isn’t necessary to partition the world into a
fixed number of processors. This supports compositional locality in libraries. Jade allowed
hierarchical specification [81], but dealt with explicit data dependencies rather than affini-
ties.

COOL provides a way to move objects on demand, but this is actually a pragma to move
the underlying page. Emerald allows moving objects on demand, requiring the overhead
of indirection on every access. Zones may be migrated, but only at the discretion of the sys-
tem; this design allows potentially higher performance implementation, such as the use of
relocating garbage collection to move objects instead of indirection.

Parallel Sather was initially conceived as a language for programming MPPs and
NOWSs. The previous Sather model [64] was syntactically similar to the zone model, but
with a single level of divisions. Instead of recursive zones, the machine was divided into
a fixed (runtime constant) number of clusters, each described by an integer. The ‘@’ nota-
tion took an integral cluster id instead of a zone.

Two language constructs that made sense for MPPs have been eliminated from the old
Sather model. Because hardware was not described recursively, there was no equivalent
to within, and no way to place threads or objects imprecisely; they were always on a specific
cluster. This lead to the relation of being near, when two threads or objects are on the same
cluster. On machines such as the CM5 where network latency dwarfs local memory access,
this is sufficient. The with x near...end construct asserted that within the body the identifier
x must refer to objects near to the executing thread.
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Another removed construct, spread, exploited the property that MPPs are both flat and
well-balanced. On such systems it makes sense to distribute data structures equally among
different clusters; the programming effort needed to manually partition the machine into
parallel sub-tasks of unequal size can be great and only of benefit for some irregular prob-
lems. Spread objects were allocated on a special replicated heap such that a copy of the ob-
ject resides at the same address on every cluster. This allowed the portion of a distributed
data structure local to a cluster to be accessed without referring to a central directory.

The zone view is similar to PMH, but describes software rather than hardware. Unlike
PMH, there is no user notion of block size or alignment, with the compiler and runtime ex-
pected to allocate data so that it is properly aligned. The following chapter expands the
pure zone model to be even closer to PMH: in addition to the software zone tree, a hard-
ware zone tree is available. This tree does not model the memory system as directly as
PMH; for example, multiple levels of cache dedicated to a single processor do not receive
their own hardware zones. Hardware zones abstract away the notion of memory capacity,
but add the notion of parallelism available within a component (thread capacity) to deal
with large, flat or dynamic (NOW) platforms.

Expressing locality

Running Running
program program
object code menmory object code memory
om hints accesses accesses
Compiler Cache Compiler Cache
P prefetch and TLB P and TLB
Zones
pragmas
source paging source paging
pefrformance
Programmer eedback (0] Programmer oS

Figure 11: The flow of locality information without and with zones.

Now that zones have been described, we can revisit the flow of locality from the introduc-
tion (figure 2, page 12). Zones form a lingua franca with which locality information can be
expressed, instead of the conventional piecemeal approach. The same structure that is used
by the programmer to communicate to the compiler and runtime - the zone tree - is also
used to communicate the structure of hardware to the running code. Because the runtime
has enough information to improve performance at multiple levels of the memory hierar-
chy, zones can be used to structure access to pages; it doesn’t require a different set of op-
erating systems calls.
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AN IMPLEMENTATION

The previous section introduced the zone model as it is incorporated in the Sather lan-
guage. Because zones should influence object placement, the implementation of zones
requires a special memory manager. This section explains how the zone model has been
implemented for Sather. The design goals, organization, and locality optimizations of
this general memory manager are presented in depth. This manager is designed to be re-
targetable to different memory systems and is crafted to respect locality at many levels.
The following section Performance results (page 68) describes the applications used to
validate the zone performance model, and analyzes the effectiveness of zone annotations
towards achieving portable and modular performance.

Special goals of thisimplementation were:

e Scalable performance - application performance should be assisted wherever possible
by exploiting information about the target memory system. The four optimizations
for locality presented on page 27 should be applied; for example, alignment should be
used to avoid having objects span cache lines. Similarly, fragmentation, poor locality
introduced by garbage collection, and other effects negatively impacting locality
should be minimized.

* Retargetability - the memory manager should be designed to work with serial, shared
memory, and distributed memory systems, and be parameterized by the characteris-
tics of the memory systems. To continue the example, differences in cache line size
might result in different placement policies when trying to avoid spanning cache lines.

* Compatibility - The memory manager should be compatible with C compilation and
existing thread packages. There are unique constraints posed by compilation through
uncooperative C compilers, such as difficulty in precisely identifying pointers that are
held in registers. For these reasons no attempt was made to explore either relocating
objects in memory or custom thread scheduling able to exploit zones.

The general organization of the memory manager is now described along with justifica-
tions of how it attempts to meet these goals.

Organization

This section describes the overall organization of memory management, including the
data structures used, methods of allocation and garbage collection, and how concurrency
is obtained on multithreaded systems. The algorithms used are a synthesis of many ap-
proaches; an excellent overview of memory management is [102].
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Allocation

Allocation is divided into regimes, each of which handles requests for different sizes of
memory corresponding to different levels of the memory hierarchy. When one regime is
not able to service a request, it is passed up to be handled by a regime that handles larger
spans of memory. The regimes are summarized in figure 12.

Application

Requests ¢ T Aligned, contiguous words

Bin allocator

¢ T Aligned, contiguous cache lines

Splay allocator

Freed and .
coalesced Clustered contiguous pages
parcels

Page allocator

Garbage Collector

Figure 12: Regimes of allocation. Requests are passed from smaller regimes to larger ones until
they can be satisfied.

The many parameters affecting memory management (such as cache line size, page size,
word size, minimum alignment, and maximum required heap) are specified by constant
macro definitions included into the memory management C code. A separate executable
must be compiled for each possible set of memory system parameters, but this also encour-
ages as much specialization as possible at compile time.

Initially, the maximum usable heap is virtually allocated. (This heap is distinct from and
should not be confused with the heap managed through malloc and free and obtained
through the Unix brk call.) Initially, pages in the heap are all mapped to a zeroed, write-
protected page; on the first write, a page fault handler maps the affected virtual page to
new zeroed physical storage. The result is the appearance of a large, zeroed span of mem-
ory which only consumes system resources as it is used, page by page.
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Each bit of memory in the heap belongs to a parcel. A parcel is a contiguous region of mem-
ory that may or may not have an object allocated in it. All objects are also parcels. Parcels
are zeroed as the last step before being turned into objects.

C imposes a minimum alignment restriction on allocated storage; on many systems, this is
64 bits. Two bits are permanently associated with each possible address at which an object
could begin. The parcel bit is set to indicate the beginning of a parcel, and the start bit is set
to indicate that an object occupies the parcel. Rather than storing these bits in the heap; they
are stored in separately allocated, contiguous arrays, usually comprising 1/32 of the size
of the heap.

Objects that are smaller than the target cache line size are allocated in bins. Each bin is
a collection of parcels obtained as a group; the first word of each parcel points to the
next, so that the parcels form a linked list. There is an array of bin header pointers
that refers to the next waiting parcel of each size. Allocation requires only checking
that the header pointer is not null and reseting it to the next parcel pointed to by the
first word. To avoid objects spanning cache lines, when object sizes do not evenly di-
vide a cache line the remainder is linked into the bin list of the corresponding size.

The number of cache lines allocated at once to form a bin is choosen to make bitwise
word operations on the parcel bits fast and convenient. For example, the word with
correct parcel bits set for each object size is obtained by precomputed table lookup at
the time bins are initialized; no bit manipulations are required.

Objects that are larger than a cache line, and entire bins of smaller objects, are allocat-
ed using a best-fit policy implemented using a splay tree. Unlike the bin lists, the splay
tree nodes are not stored in the unused words at the beginning of the parcels. Instead,
splay nodes are allocated using independently managed bins carved out of entire pag-
es.

When the splay tree is unable to service a request for an object, a new set of pages is
allocated for it. Pages are allocated in groups using address-ordered first fit. The array
of bin pointers and the splay root pointer together comprise an allocator. A separately
allocated page descriptor table manages which allocator is associated with each page.
Each page only holds parcels of a single allocator, but an allocator may manage par-
cels on many potentially non-contiguous pages.

Zones form a tree. Each zone has pointers to children, next sibling, and parent. Zones
also each have two allocators: one for objects bearing pointers and one for leaf objects,
which have no pointers. Different allocation primitives are used to distinguish which
allocator should be used. As an optimization, each page descriptor entry also has a bit
that indicates if that page may contain objects with pointers. Each zone also has a pre-
ferred page in the virtual heap that is chosen at random when it is created; pages are
allocated preferentially to the zone’s allocators by searching starting at this page.

Under some conditions, garbage collection is initiated rather than granting new pages
to a zone. On distributed systems, zones are also associated with clusters; the details
of distributed memory management are discussed in the following chapter.

These data structures are depicted in figure 13.
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Figure 13: Data structures used for memory management. The zone and splay trees are not shown.

While the algorithms used for memory management are designed for speed, Sather is no
more allocator intensive than other imperative languages such as C++. The compiler addi-
tionally moves idiomatic allocations to the stack and inserts explicit deallocation for some
kinds of garbage known at compile time, so memory management is often not observed to
be the computational bottleneck.

Garbage collection

Objects are reclaimed by garbage collection when the number of nonzero pages granted
to the heap passes a threshold. On multithreaded systems, collection begins by halting
threads other than the one initiating collection. Then all root areas are located and
searched for pointers to objects in the heap. For serial systems, this means forcing regis-
ter contents onto the stack and identifying the stack and data areas. For multithreaded
systems, this requires asking the operating system for a general memory map in order to
find the stacks of the various threads. These operations of stopping threads and discover-
ing roots are not well supported by most operating systems; this implementation on So-
laris requires the use of assumptions about memory layout, assembler routines to save
registers, and the use of interfaces intended for debugging.

Collection occurs in two phases. First, all objects reachable from a root are marked. A mark
bit is associated with each potential object location in the same way as the parcel and start
bits. Initially clear, these bits are set when an object is reached during a tight loop that
traverses the heap depth-first. Potential pointers are only followed if they point into the
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heap, are correctly aligned, point to the start of an object (identified by the start bit), and
that object has not yet been marked. The cost of the mark phase is proportional to the com-
bined size of live, pointer-bearing objects in the heap.

The second phase sweeps unreachable objects. First all bin pointers and splay nodes are in-
ternally freed by resetting the header and splay root pointers, which occurs in constant
time per zone. Then, all information about free parcels is reconstructed. Starting at the be-
ginning of the heap, ranges of pages belonging to individual allocators are considered.
Each parcel in the range is considered one at a time. Unmarked objects revert to being free
parcels, and are added to the appropriate bin or the splay tree. At the same time, contigu-
ous free space is coalesced. The cost of the sweep phase is proportional to the total size of
nonzero heap plus the number of parcels at the beginning of collection. However, the
sweep operations are accelerated by fast bitwise logical operations on words and a lookup
table to assist in finding the first set bit of a word. Systems with larger word sizes, vector
facilities (eg. MMX [53]), or hardware supported population count would benefit even
more.

When entire pages are free at the end of a region, they are returned to the pool of free pages,
allowing the pages managed by an allocator to shrink. These pages may optionally be re-
turned to the operating system by mapping them to the write-protected zero page again.
After sweeping, the threshold for the next collection is set and other threads are restarted,
if necessary.

Atomicity and deadlock

On multithreaded systems, accesses to the data structures used by allocation and gar-
bage collection must be protected from interfering with one another. For example, two
threads simultaneously attempting to allocate the same size object from a bin could re-
sult in each obtaining the same parcel. To prevent this, each zone must be protected by a
spinlock which is obtained before the bins or splay nodes of either associated allocator
may be accessed. Similarly, the parcel and start bits are protected by the spinlock of the
zone holding the allocator which manages them. This serializes accesses to the same
zone, but threads which access different zones proceed with only the penalty of uncon-
tested spinlock access.

This simple locking model is upset by garbage collection. A collecting thread has to shut
down all other threads in order to find their roots, but in order to make sure internal struc-
tures are in a clean state, the collecting thread has to first allow the other threads to com-
plete any pending allocations. However, it isn’t sufficient to acquire the spinlocks of all
other zones before collecting; more than one thread might attempt to collect at once, which
would result in deadlock. This deadlock is avoided by having threads voluntarily give up
their spinlock and then reacquire all spinlocks before attempting collection. The spinlock
of the root global zone must be acquired before any others; this imposes a deadlock-avoid-
ing serialization to garbage collections.
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Design for locality

The memory manager is designed to improve application performance through im-
proved locality. This section examines the design decisions that affect application locali-
ty. Also of interest is the locality displayed by the memory management code itself and
the effect of that code on application locality.

Fragmentation

Because we may not move objects after allocation, an important concern is the fragmenta-
tion of memory. Memory that is wasted (unusable to the application for any reason) may
be classified as external fragmentation, internal fragmentation, or overhead. External
fragmentation is caused by an allocator not being able to give space to an application be-
cause contiguous free space is too small or the policy of the allocator forbids it. Internal
fragmentation occurs when the allocator uses sizes that do not correspond to the request-
ed amount. For example, rounding allocation requests for alignment leaves unused mem-
ory (eg. when the size is not already a multiple of 64 bits). Overhead is space that is
reserved by memory management itself, such as the parcel and start bit tables.

Fragmentation is of great interest because it is correlated with locality; for example, appli-
cations which access their allocated objects uniformly would pay miss penalties at every
level of the memory hierarchy proportional to the total footprint of memory as determined
by fragmentation. Unlike memory system behavior, fragmentation is easy to quantify.

A recent study [73] suggest that conventional wisdom about allocator policy has been
skewed by poor experimental method. Two particularly good allocation policies appear to
be best-fit, in which the smallest possible free range of memory is used to meet allocation
requests, and address-ordered first fit, in which the block of sufficient size closest to the be-
ginning of memory is used. Both have the property that large free regions tend to not be
split up when smaller regions are available, and this reduces external fragmentation.

The allocation policy used here is a hybrid of these approaches. Small objects are allocated
from bins, which produces little external fragmentation if the bin size is small because ob-
jects fit together with no gap. Objects larger than a cache line are allocated best-fit, using
the splay tree to efficiently find the next largest available parcel, with ties resolved in a
nearly LIFO fashion. Objects large enough to require multiple pages that are not satisfied
by the splay tree are allocated with a variant of address-ordered first fit. The variation
comes from choosing different pages to be “first’ for different zones. While not strictly nec-
essary, this was done to even further discourage mixing together pages from different
zones.

Coalescing occurs only at garbage collects, potentially increasing fragmentation when ex-
plicit deallocation is used heavily. However, Neely [73] found that deferring coalescing
had little effect on fragmentation without garbage collection, which suggests that it is not
likely to be a problem.
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In this design, internal fragmentation only comes from rounding objects to the minimum
alignment required by C, which is unavoidable. However, requiring that small objects not
span cache lines is likely to increase external fragmentation; for example, on a system with
32 byte lines and 8 byte alignment, an allocation of 24 bytes leaves an 8 byte parcel remain-
ing. If the application makes no requests for 8 byte allocations, this space will be lost until
it can be coalesced into a larger parcel. Sources of additional overhead include the parcel,
start and mark bit arrays (3/64 of memory), the page descriptor table (1/2048 with 8KB
pages), splay nodes (16 bytes per large parcel), and the stack used during the mark phase,
roughly proportional to the depth of objects in the heap.

Conservatism

In order to remain compatible with C, garbage collection is conservative. Unfortunately,
this can result in additional wasted space by failing to collect objects that are not actually
reachable by the program, but still appear to be reachable because of spurious values in
root areas that appear to be pointers. This has not been observed to be a problem in prac-
tice, which agrees with our previous experiences with the Boehm-Weiser collector; for
this reason, no attempt was made to blacklist areas of the heap spuriously pointed to by
root areas.

Various steps were taken to reduce unnecessary conservatism and the impact of necessary
conservatism on locality. Careful code generation allows any pointer that does not point to
the beginning of an object to be passed over. Code which identifies root areas uses heuris-
tics to minimize the memory scanned. Pointers are distinguished from nonpointers in the
heap, for example, by segregating leaf objects. Finally, entire parcels are always zeroed on
allocation. Zeroing of the portion occupied by an object is required by Sather semantics, but
zeroing any remainder - due to internal fragmentation - helps prevent resurrecting point-
ers from a parcel’s previous incarnation.

Application performance

The principle benefit to application locality is that zones are enabled to the application. Ob-
jects in different zones are kept away from each other so that they don’t share cache lines
or pages, reducing false sharing. Objects in the same zone are also clustered together to
minimize capacity and conflict misses.

In addition to zones and the locality benefits of decreased fragmentation and conservatism,
the design also encourages application locality by placing deallocated objects at the head
of bin free lists and at the root of splay trees. Thus, subsequent allocations retrieve these
parcels before others, so reallocation has a LIFO character unless there is an intervening
collection. Objects are zeroed only just before granting the space - right before it is likely to
be dirtied by the application anyway.

A weakness of this design is that the zone tree is essentially flattened, considering each
node of the tree to have equivalent status with respect to placement. While this is a legiti-
mate implementation of the zone performance model, the hierarchy of objects and threads
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is not fully exploited. Alternate designs might be able to do so, especially if relocating gar-
bage collection were possible. For example, the present design always keeps objects of dif-
ferent zones on separate pages, but this might lead to fragmentation and conflict misses for
an application with many very small zones. Such an application would be better served by
clustering that was able to adapt to the sizes of zone subtrees as they change.

No attempt is made to anticipate and avoid application conflict misses. For example, zones
smaller than a page will tend to have all their objects at the beginning of the page, which
could lead to nonuniform use of cache lines. Bonwick [17] describes a kernel allocator
which artifically pads arrays of objects to improve the uniformity and thereby decrease
conflict misses. Any attempt to avoid these misses (for example, by allocation starting at a
random position in apage) might impose additional fragmentation by dividing large re-
gions or decrease the benefits of alignment within pages, so this was not attempted here.

A size threshold is used to determine when to garbage collect. This threshold is set by heu-
ristics which attempt to balance the locality lost by allowing more pages to be allocated
with the performance lost due to collection. At each collection, the time wasted in paging
since the last collection is compared to the time spent collecting, and this is used to set the
threshold for the next collection. The heuristic attempts to keep the time spent in paging
(including paging during collection) approximately equal to the time otherwise spent col-
lecting. Keeping these statistics equal approximates the minimization of their combined
overhead; if they are accurately measured and independently monotonic, their sum will be
within a factor of two of the theoretical minimum time. This heuristic was found to often
be too optimistic about granting memory: applications change allocation and heap access
over time, and at the critical point where paging sets in performance degradation can be
both nonlinear and catastrophic. For this reason, the heuristic was tempered by hard limits
on the amount of heap growth permitted when paging occurs.

Bin allocation code is coded as macros; in the common case when object sizes are known at
compile time, constant propagation in the C compiler allows extermely tight, inline code
to be generated. For example, which bin to use becomes known at compile time; code can
be precisely unrolled to zero the allocated object; and therefore no function call is needed
in the common case for allocation. This trick has previously been used for Unix kernel al-
location [70]. Other than the use of zones and ensuring that the locality of memory man-
agement interferes minimally with the application, there is little else that can be done to
improve application locality outright.

Sather guarantees that all assignments must appear atomic to the user. All memory sys-
tems have naturally atomic pointer loads and stores, but some larger data types - such as
double precision floating point - may or may not be atomic depending on the implementa-
tion. To guarantee atomic assignments of other composite types, the Sather compiler must
insert expensive spinlock code around the assignments [37]. Atomicity is often determined
by the interaction of alignment with the memory system. For example, a double word that
does not cross cache line boundariesmay be atomic with respect to other processors be-
cause communication always occurs using the contents of entire lines in write-back caches.
Since the memory manager aligns all small objects to cache lines already, that suggests that
restriction of these objects to the heap could allow the safe elimination of many spinlocks.
(This problem is not restricted to Sather: in a concession to x86 semantics, Java only man-
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dates atomicity for double precision variables declared to be volatile. As there is no way to
declare the elements of double precision arrays to be volatile, hence traditional scientific
codes are less robust against race conditions.)

Memory management locality

Splay nodes are isolated from the memory they describe. Splay nodes are only needed for
objects larger than a cache line, so the use of a parcel header that holds the splay tree point-
ers in-line would lead to very poor use of that cache line. Instead, splay nodes are allocated
with their own bins on their own pages, which brings greater density to the splay informa-
tion itself; more than one splay node fits on a cache line, and it is not necessary to access
the memory being considered for allocation to allocate it.

Splay trees obtain log time amortized access by modifying the tree at every access to bring
the accessed node to the root. This gives them some unique properties among tree data
structures. Recently accessed nodes get moved closer to the root, so repeated queries for
similar sizes become very fast. Programs frequently allocate similar sized objects together,
so this may improve allocator efficiency.

Because splay nodes may be written to on every access, the importance of isolating splay
nodes from the data they describe is especially important to avoid costs associated with
writing - for example, false sharing and disk writes of dirty pages. A final potential cost of
placing splay nodes in free areas is that such areas are likely to be aligned to common off-
sets from within the cache. For example, object bins are always aligned to a convenient
multiple of cache lines. If splay information was frequently located at those offsets, this
could cause extra conflict misses, especially on direct-mapped cache hardware.

The placement of start bits in a table distinct from the heap data the bits describe similarly
avoids needing to access memory to find out whether it contains a useful parcel or is the
start of an object. Memory associated with objects needn’t be accessed at all during the
mark phase to identify legitimate pointers, and the segregation of leaf objects in the heap
allows marking to often proceed merely by checking the page descriptor table first - far less
expensive than a potential page fault. Similarly, the sweep phase only accesses lines in
which application data may reside to link together binned parcels. The sweep phase access-
es the parcel, mark and start bits in a regular, streaming fashion in a single pass from one
end of the heap to the other.

Summary

An implementation of the pure zone model has been created for shared memory ma-
chines. All aspects of memory management were crafted with an eye towards the locali-
ty of the application as well as the locality of memory management itself. Allocation uses
different policies depending on the size of memory requested, tuned to the size of cache
lines and pages. Policies were chosen to reduce memory wasted due to fragmentation,
while the algorithmic implementation of those policies was chosen for efficiency and lo-
cality. Internal data structures for memory management are segregated from application
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data. Major design constraints include the need to cooperate with C compilation and the
use of existing thread packages. These constraints resulted in conservative garbage col-
lection, concurrency in allocation but not collection, and no attempt to schedule threads.

The idea of hierarchically structured memory management is not new. The locality of Unix
kernel allocators is better understood [96] than that of general purpose memory manage-
ment. Dynix [69] used a multitiered allocator, and Sciver et al. [83] partitioned allocations
into regions distinct regions based on object type®. Hierarchical partitioning of allocation
itself, however, appears to be novel.

Performance results

The previous section described how this implementation maps software entities onto tar-
get hardware with memory management parameterized by the target memory system.
This section now evaluates this implementation of the zone model.

Two microbenchmarks are used to show that the zone model can be relevant to perfor-
mance. Each takes a simple operation on data local to a thread and explores scalability as
more threads are added, with and without zones. Keeping the operation performed by
each thread simple makes it possible to interpret performance effects that would be too
subtle to observe in larger bodies of code. The first operation examined is linked list re-
versal, and the second is matrix multiply for various numeric element types.

Two more substantial Sather applications are presented to demonstrate annotation by
zones in real code. The first application is the Sather compiler. Because it was written be-
fore zones were proposed, this code is an honest data point in evaluating how useful zones
can be at decoupling algorithmic structure and locality annotation. The second application
is a physical simulation with an efficient algorithm that requires tree-structured computa-
tion and therefore suggests the use of zones.

List reversal

Table 7 shows inner-loop code that is contrived to be limited by the memory system. It re-
verses a linked list by scanning down the cells, reversing one link at a time. Each list has
a thousand objects, each of which is eight bytes. Reversing the list requires performing
memory reads and writes on each object, and these cannot be optimized away by clever
compilation. When multiple threads are operating on multiple lists at the same time, the
placement of objects on cache lines will affect performance. Changing the zone annota-
tions used by the code which allocates the data structures should change the observed
performance.

3. This paper called allocation regions zones, although they were nothing more than contiguous arrays of equally
sized objects. Recursive zones of zones were considered, but instead the recursion was truncated at the second level
by a special zone allocator. The implementation described here might be honestly appraised as making the same
compromise: it does not attempt to exploit the structure of the zone tree beyond distinguishing individual nodes.
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prev:FOO := void;

p ::= lists[i];

loop untill(void(p)); loop: st %02,[%01+4] -- reverse pointer
n ::= p.next; mov %01,%02 - prev := current
p.next := prev; orcc %00,%9g0,%01  -- current := next
prev = p; bne,a loop -- continue if not void
p:=n; Id [%01+4],%00 -- branch delay slot

end;

lists[i] := prev;

Table 7: Microbenchmark code designed to be limited by the memory system. Left: Sather code to
reverse a linked list; right: resulting sparc instructions for the inner loop.

Three types of zone annotations are timed:

® Zones - zones are added to organize the touched objects so that each thread’s objects
are within a single zone. The zone performance model predicts that this will result in
higher performance, because the enclosing zone for each thread contains fewer
threads and objects (see definition on page 53). In terms of the memory system, ob-
jects used by different threads can be expected to never share cache lines, minimizing
false sharing and capacity misses.

¢ Random zones - zones are added which have no meaningful relationship to the ex-
pected patterns of memory access; this controls for the effect of having multiple zones.

¢ No zones - with no annotation, all object allocation occurs using the default zone allo-
cator that main is started with. Objects are allocated to the lists round-robin; this order
ensures that objects from different lists end up sharing cache lines. On multithreaded
systems this is expected to lead to false sharing.

These three policies are used to explore the portability and modularity of the microbench-
mark. For multiprocessors, a primary performance concern is scalability. Figure 14 shows
the scalability of inner loop memory accesses of the three zone policies on a Sparc 10 with
128MB and four hypersparc processors*. Additionally, the timing of purely serial code (in-
cluding optimizations available only to serial Sather) and the ideal speedup are shown.
Each data point represents running the microbenchmark many times to amortize start-up
overhead; the maximum speed over at least 25 trials was taken to remove transient effects
caused by other processes. The dips at 5 and 9 threads reflect the nonpreemptive schedul-
ing of threads under Solaris, leaving processors idle.

It can be seen that zone annotations are an effective way to achieve scalability in this mi-
crobenchmark. Unzoned allocation causes the application to become swamped by false
sharing misses as soon as two or more processors are executing, together performing worse
than simply running serial code. The extremely flat speed for serial execution coincides for
all three allocation strategies; the cache easily holds an entire list while it is repeatedly re-
versed, even when poorly allocated. The slight performance increase after 10 threads is
probably a result of the list reversals growing out of sync; false sharing drops when lists
are less likely to be accessing the same position in the lists at the same time.

4. Elapsed times produced with the cs 1.1 compiler with -O_fast and gcc 2.7.2 with -O2.
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Figure 14: Performance on a Sparcstation 10 with four hypersparc processors. Vertical axis is
combined list reversals per millisecond; horizontal is number of threads (one list per thread).

The zone performance model predicts that random zoning will at worst be somewhat in-
ferior to having no zone annotations at all: the enclosing zone of each thread is still the de-
fault, global zone, which is now bigger (because it contains the zone objects). Here, random
zones eliminate most false sharing misses, but decrease the cache efficiency by not cluster-
ing successive list nodes as closely in memory. The probability that list items share cache
lines decreases with more threads, bottoming out at only one object per accessed cache line.
Because objects are eight bytes and cache lines are 32, this amplifies the working set by a
factor of four. As a result, random zone allocation holds up until there are eight threads; at
that point, the combined working set grows beyond 256KB, the point where L2 cache and
TLB misses set in on the hypersparc’. In contrast, zoned lists stay nearly optimal because
the working set stays much smaller than the cache.

Figure 15 shows the effect of executing the same code without modification on two other
platforms with different memory systems: ultrasparc and pentium pro uniprocessors.
These serial platforms do not suffer from false sharing, but they are still affected by capac-
ity misses created by not having the data as densely organized in memory. The ultrasparc’s
L1 cache is twice the size of the pentium pro, so degradation for unzoned allocation sets in
at three zones instead of two.

Interestingly, unzoned allocation does slightly better than zoned allocation for a single list
on the ultrasparc. No zone annotations means that all objects, including Sather runtime
structures, are allocated from the unique default zone. The slight performance increase
might be due to reduced conflict misses by allowing these tangential data structures to be
clustered with the list data. While having no zone annotations eliminates all cache line re-

5. Details of the three memory systems benchmarked in this section may be found in table 15 on page 111, and
are plotted for size and stride vs. latency in figure 4, page 18.
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Figure 15: Performance on serial platforms. Axes same as figure 14. Left: ultrasparc. Right:
pentium pro.

use for four or more threads, the random zoning does admit some reuse and so does mar-
ginally better. Most importantly, zoned allocation consistently retains approximately peak
performance for all numbers on both processors.

Portable performance has been demonstrated by demonstrating that zone allocations can
maintain efficiency on three different system with varying numbers of processors, cache
sizes, and compilation models (serial and threaded). Modular performance has been
demonstrated by performance scaling over a range of data structure sizes and degrees of
parallelism.

Matrix multiply

The list reversal microbenchmark was clearly contrived to cause memory system prob-
lems; for example, the order of list cell allocations was controlled to invoke false sharing.
This might not represent the performance of real applications. We now examine the com-
position of unmodified library data structure code with and without zones.

The Sather libraries provide a variety of mathematical types, including matrix and vector
classes that can be parameterized by the type of element they contain. For this microbench-
mark, various library classes were composed without modification to create matrices with
the following element types:

¢ FLT, the IEEE single precision floating point type. A matrix of this type is stored
densely with the same layout as Fortran. FLT is a base type in Sather and its proper-
ties are given special consideration by the compiler.

¢ CPX, an immutable complex type, composed of two FLT fields for the real and imagi-
nary components. Because this class is labeled immutable (see page 103), the compiler
also knows how to densely allocate the matrix in the same layout used by Fortran.
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* OBCPX, a type identical to the library type CPX but without explicit immutability. In
this representation, a new object must be allocated on the heap for each operation
such as addition and multiplication. The matrix is thus represented as a contiguous ar-
ray of pointers.

* RAT, rational numbers represented by an arbitrarily large integral numerator and de-
nominator. Each RAT is immutable, so there are two pointers per matrix element. In
addition to the contiguous matrix storage, each element also requires two heap ob-
jects, one for each of the infinite-precision INTI objects representing the numerator
and denominator.

* RATCPXis a complex number in which each field is a RAT. Because both CPX and
RAT are immutable, the representation this generates is again a contiguous matrix,
with each element requiring four pointers.

Both FLT and CPX have performance models which are implicit. Sather programmers
know that FLT is a base type so its performance model is defined by the language. The lan-
guage also guarantees that arrays of immutable objects will be allocated contiguously. The
other element types do not have implicit performance models. Zones are designed to allow
performance modeling without exclusive reliance on implicit models or explicit place-
ment. At the same time, they should coexist with existing methods for obtaining locality,
and so must not degrade performance in the FLT and CPX cases.

Because Sather guarantees atomic assignment, the naive use of an immutable class in a par-
allel system introduces expensive implicit synchronization in the form of spinlocks (page
66). There are three ways to work around this problem. The traditional solution is to col-
lapse the data structures by manually inlining all occurrences of the immutable class. This
substantially hinders code reuse. A second solution is to give the compiler special license
to eliminate the implicit synchronization - in essence, promising the compiler that there are
no race conditions in the code. A third way is to avoid immutable objects and use ordinary
heap allocation, the natural implementation in object-oriented languages such as Java that
have no equivalent notion of immutability or aggregate values. The second and third alter-
natives were taken here.

Figure 16 shows the relative performance of these element types and the effect of adding
zones on performance on a Sparc 10 with four hypersparc processors and 128MB. Each
data point was obtained a large number of matrix multiplications many times and record-
ing the fastest; times include overhead for allocation but not garbage collection. The inner
loop is literally

loop repeat.times!;
m:=m*m;
end;

where m is initialized to the 10x10 identity matrix for that type, to avoid potential numer-
ical performance issues such as exceptional underflow. When zones are enabled, there is
one zone per thread.
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Figure 16: Number of threads (horizontal) vs. matrix multiplications per millisecond (vertical, log
scale). For each element type, the upper line is performance with zones, the lower without zones.
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Figure 17: Number of threads (horizontal) vs. speedup for adding zones for each element type.

Each element type loses roughly an order of magnitude in performance over the previous.
The types with an implicit model scale nearly perfectly with the number of threads; the
contiguous representation eliminates indirection and makes efficient use of cache. In con-
trast, the more general data structures do not scale as well. These structures require heavy
object allocation; for example, each intermediate value of a row-column product requires
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generating an object which is referenced only once, when it is consumed. Under these con-
ditions, the system bus becomes a bottleneck and the scalable behavior of allocation is es-
sential. Multiple zones help increase allocation concurrency as well as improve cache
behavior.

Figure 17 shows the ratios between the speeds of the zoned and unzoned implementations.
Note that these speedups might be better viewed as negative slowdowns; they were ob-
tained by preventing loss of performance through contention, but actual scalability
through parallelism remains poor on this platform.

Sather compiler

The Sather compiler is the largest application considered here, about 42k lines of code,
not including the 40k lines of the Sather standard library. This compiler has been widely
distributed and been in production use for several years. (Details of the design can be
found in the section ‘Implementation Overview’ in the appendix on page 104.)

Compiling is an application domain offering many opportunities for zoning to improve lo-
cality. Consider scanning and parsing, in which a number of files are converted into ab-
stract syntax trees. Each node represents a grammatical language construct. The stream of
characters in each file is scanned into a stream of tokens, which is parsed into the tree; a
symbol table is constructed at the same time.

This line is from the parser in the loop
that parses all files. tcd:AS_CLASS_DEF:=parser.source_file

If it is desired to keep all the abstract
syntax nodes that came from a single
file clustered in a single zone, a new
zone can be created for the routine to
execute within; this will cluster togeth-
er every object the routine creates.

tcd:AS_CLASS_DEF:=
parser.source_file @ #ZONE

A similar annotation can be used to cluster by module (groups of files).

Note that when the routine source_file returns, the zone of execution of the calling thread
also returns to what it was before the call. The Sather compiler uses a recursive descent
parser with a routine that corresponds to each language construct. If it were desired to
cluster tree nodes by class or method as well as by file, this can be done with additional
annotations; the generated software zone tree would then follow the syntactic structure.
This would be an example of the modularity of zones. If other phases of compilation access
the syntax tree with locality that coincides with this choice of zoning, performance may im-
prove (for example, by reducing conflict and capacity misses.) However, there is a limit to
which the granularity of syntax can be profitably zoned because of overhead, particularly
in this implementation which consumes at least one page per zone.
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No parallelism was involved in this example. If threads were forked to parse each file
concurrently with a new zone for each, the clustering of objects from the same file would
be automatic. Multiple threads, however, would also require making sure the shared
symbol table data structure remains safe and efficient when accessed by multiple
threads - for example, through mutual exclusion. While adding zone annotations never
violates correctness, adding parallelism to a complex originally serial code could and
was not attempted.
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Figure 18: Speedup of zone annotations, normalized to the Boehm-Weiser collector.

Figure 18 compares the overall performance of the benchmark applications using the
zone memory manager against the performance of the Boehm-Weiser collector. Times are
the minimum elapsed time on at least one hundred runs on an unloaded Ultra I with
128MB. To enable this comparison, each application was compiled to execute serially
with no overhead for parallelism and with full optimization. Three annotation variations
are shown: no zones; an annotation creating a single zone per module; and an annotation
creating a single zone per file. There are also three variants of compilation: stopping after
the parsing phase; stopping after C code was generated by ordinary, non-optimizing
code generation; and a full compilation including -O_fast optimization. In each case com-
pilation was halted before the generated C code was written to disk, so the times include
only input I/O overhead.

Parsing is a small portion of compilation. The total elapsed time for parsing was around
four seconds, so measurements were easily dominated by start up overhead. Parsing is pri-
marily an exercise in I/O and allocation, with little opportunity to exploit well-placed data.
Unannotated compilation fared poorly with respect to the Boehm-Weiser system. Howev-
er, longer running compiles saw greater benefit to the locality-conscious design of memory
management design.

In each case, having a zone per file brought a speedup, but this system does suffer from a
fragile dependency on good annotations. Experiments with zoning on a finer granularity
brought poor results, presumably because of the high overhead of individual zones. This



76 An Implementation

suggests that the design would benefit from a more adaptive policy towards the use of pag-
es, perhaps by allowing sharing of pages until sufficient allocation within the zone war-
rants the higher order of partitioning.

When a new identifier is encountered, it must be inserted into the shared symbol table.
Without farther annotations, each identifier would likely be clustered with the syntax
nodes of first file that referenced it. Depending on the input, this might be either good or
bad; an alternative strategy would be to build a symbol table which dynamically places
identifiers in the zones of the classes that reference them most often.

Adaptive mesh refinement

Adaptive mesh refinement is used to efficiently simulate continuous physical phenome-
na; for example, the motion of waves. The behavior of fluids can be described by partial
differential equations. These equations may be approximated by constructing systems of
discrete equations representing values at points on a grid. Computers model the phe-
nomena by numerically solving the discrete system.

Unfortunately, fine grid resolution is often necessary to faithfully model the physics of in-
terest. Fine grids have many variables, so the system of discrete equations is generally too
big to solve using exact techniques. Instead, iterative numerical methods are used that
compute successively more accurate approximations to the solution. Naive application of
these techniques may still take too long to converge, requiring a number of iterations far
more than linear in the number of grid points.

Fortunately, many physical phenomena display variations in scale that can be exploited.
Multilevel methods [18] use coarser grid resolutions to speed convergence on the finest
grid. Furthermore, there are often portions of a simulation for which a coarser grid will suf-
fice. For example, modeling a shock wave may require fine resolution around the discon-
tinuity of the shock, while the areas away from the shock are quiescent and may be
modeled with tolerable accuracy with only coarser resolution. Adaptive mesh refinement
(AMR) locally refines the mesh only where it is needed, allowing finer resolution of the
problem for the computation expended.

A typical AMR code partitions the physical domain into patches. Any point in the grid is
covered by at least one patch, and patches can nest to bring arbitrary resolution where it is
needed. It is convenient for patch resolutions to have twice their parent’s resolution. This
naturally leads to a tree representation, in which depth in the tree corresponds to finer res-
olution and children are patches nested and aligned with the coarser parent patch.

Figure 19 shows snapshots from a simulation by the author that uses AMR to model four
ripples propagating in a shallow viscous fluid. Also shown are the patches used at each
stage of the simulation.
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Figure 19: Frames from the droplet simulation and the corresponding adaptive patch trees.

In this implementation, each iteration advances the entire system by a constant time step.
At each time step, each grid point is dependent on its immediate neighbors within a patch.
Grid points on the edge of a patch must also match boundary conditions imposed by the
neighboring child or parent patch. Patches are refined by comparing results on a coarse
grid to the results obtained on a finer grid; when the error per unit area exceeds a threshold,
a new, finer patch is created. Patches may shrink when this error drops again. For details
of the specific algorithm chosen for representing patches, see [66].

Each patch is represented by a data structure with two arrays of grid cells. One array rep-
resents the previous time step’s values while the next time step is computed. Each array
element is a composite structure composed of the floating point variables modeling hori-
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zontal and vertical velocity and fluid height. This simulation is parameterized; to change
the physics being simulated, it is only necessary to plug in a different cell class. Each array
is ringed with ‘ghost cells’ that represent values outside of the patch.

The entire system of patches is evolved iterate is

over time in synchronized iterations. par )

Patches may compute the evolution of prOJect_from_chlldren.;
. . .. compute_ghost_cells;

their cells in parallel to their siblings loop

and parent, but must synchronize to c::=children.elt!;

compute boundary conditions and to fork c.iterate @ where(c) end;

consider whether patches represent end;

sufficient resolution to meet accuracy en de.volve,

goals. The tree structure of parallel conéider_repatching;

computation is expressed by this re- swap_arrays;

cursive routine using a par statement. end

The computation required to evolve a patch at each time step requires access only to the
memory representing its grid points and is independent of communication with other
patches. Communication and synchronization between patches is only necessary between
a patch and its parent and children; therefore, communication always follows the edges of
the patch tree. This suggests associating each patch with a zone to contain its arrays and
children.

The natural representation of cells are as immutable objects. Such objects can be efficiently
manipulated in registers or on the stack, and arrays of immutable objects are contiguous in
memory (page 103). The implementation with immutable cells is already well structured
for locality without zones, because each array of cells is contiguous.The only expected ben-
efit in this implementation is the clustering of the two arrays representing the previous and
current time step. Figure 20 illustrates speedup on a Sparc 10 with four hypersparc proces-
sors and 128MB, with maximum concurrency throttled by a global semaphore. The upper
pair of lines shows that adding zones has very little effect on performance.

In contrast, heap-allocated elements are only contiguous in memory to the extent that con-
secutive allocation requests happen to perform contiguous allocation. Heap allocation also
consumes an obligatory object header word. The lower pair of lines in figure 20 illustrate
speedup relative to the same control simulation as the upper pair, the immutable cell im-
plementation running serially with the Boehm collector. The penalty relative to this control
simulation for single threads is 37.8% without zones.
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Figure 20: Speedup (vertical) of AMR code relative to serial code with the Boehm collector for
varying maximum concurrency (horizontal) on a Sparc 10 with four hypersparc processors.

While this implementation of zones does guarantee that cells within a single patch are clus-
tered in memory and is expected to provide improved performance during the interior
evolution of a patch, it is not able to exploit the more general tree structure that determines
communication between patches. The implementation with heap allocated cells does ben-
efit somewhat from zones. With unlimited threads, the speedup with zones relative to no
zones is 12.1%. On a uniprocessor Ultra I with 128MB the equivalent speedup was 13.2%,
so this effect is clearly not due to increased concurrency of allocation. However, this bench-
mark remained unable to scale on this platform as threads were added.

Assessment

One of the goals for this implementation was compatibility with existing usage of compil-
ers and thread packages. This had an overwhelming influence on the design. In particular,
relocating objects and zone-aware thread scheduling were ruled out, although these could
reasonably be expected to play a crucial role in the effective implementation of zones. As a
result, only a marginal implementation of the zone model was achieved.

The list reversal microbenchmark conclusively exhibited pathological memory system be-
havior, but it was specifically contrived to do so. The other applications demonstrated
speedup with zones; however, the link between this speedup and zoned allocation was not
ironclad. It is possible that these benefits came from misunderstood performance effects.
For example, enhanced concurrency of memory management could perhaps explain some
of the benefit seen on multiprocessors.
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More general goals of the zone model are high performance and modularity. This imple-
mentation obeys the letter but not the spirit of the zone performance model by only at-
tempting to cluster objects with respect to individual zones. While the performance of the
implementation was at least comparable to the Boehm memory manager, modular perfor-
mance was not demonstrated. Only one benchmark (AMR) used a true zone tree structure,
but this application already displayed admirable locality within patches. The implementa-
tion was not able to exploit the structured communication between patches. The resulting
speedup was uninspiring.

Conclusive demonstration of the practical benefits of the zone model requires more than
attempted here. Practical validation of the model would include an implementation of
zones that more closely implements the performance model, demonstration that perfor-
mance benefits are due to memory system effects, and applications composed of sufficient
layers to explore the performance effects of composing independently zoned code.



Extending Zones 81

Extending Zones

The previous chapter, Zones (page 50), described the pure zone model, an implementation,
and performance results. While entirely portable and modular, this model may not be suf-
ficient to obtain the highest level of performance on machines with severe penalties for
poor locality. The lack of information about the hardware was partially compensated for
by giving the programmers a rich way of expressing their intention towards software enti-
ties, but more information about the structure of hardware could still be very useful. For
example, networks of workstations, in which conventional computers are used as a single
coordinated computing resource, are often limited by overhead for using the network. Ob-
taining high performance on these platforms requires that the structure of memory access
reflect the structure of hardware. This, in turn, requires that the structure of hardware be
visible to executing code. This chapter proposes an extension to the pure zone model that
would make this information available.

The next chapter, Conclusion (page 94), summarizes the other chapters and finishes with
possibilities for further research.

HARDWARE ZONES

There are many ways to describe hardware to the programmer. The approach taken here
exposes different levels of hardware by abstracting the hardware as a tree. Like PMH, the
leaves of this tree represent hardware units capable of executing threads, such as proces-
sors, or thread contexts within a processor. Interior nodes represent collections of hard-
ware. They are the combination of all hardware represented by descendent nodes, and
have two or more divisions, each of which forms a subtree. The root represents the entire
machine on which the program executes. The programmer knows that communication
within a node is faster than communication with nodes above it on the tree, but nothing
about the relative performance between levels. This exactly mirrors the performance mod-
el for software zones.

Leaf nodes have a integral capacity, which is a suggestion of the number of threads that are
available in parallel, indicating how many threads should be created to maximize utiliza-
tion. The capacity of an interior node is the sum of the capacities of its children. A hard-
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ware tree consisting of a single leaf node at the root describes a system only in that it
specifies a recommended number of threads; it does not commit to any hardware structure
beyond that. Capacity, like the structure of the hardware zone tree, is a runtime constant.
(Users of the pure zone model are also able to discover the overall thread capacity of the
machine, but it is not a notion tied directly to zones.)

A tree structure need not be imposed on the description of hardware. For example, if an
aggressive memory system is present, latency effects may not dominate execution time (cf.
Tera, Cray T3E). On networks of workstations, which workstations contribute to the large
single system image may vary during a program’s execution, so it is not accurate to de-
scribe the hardware with a fixed tree. Such systems may be best described by a single node.

Like PMH, it would further be possible to have even more information about block size,
latency, bandwidth, transfer times, heterogeneity, and so forth. Many of those detailed pa-
rameters do not fit particularly well into a high-level view of objects and threads, so they
are not pursued here.

Zone hardware abstraction examples

The previous chapter anticipated that many future systems will consist of loosely coupled
processor clusters. The zone hardware abstraction is flexible enough to represent these as
well as most existing computing platforms, demonstrated by these examples.

A B C D E

Table 8: Five trees associated with the example platforms

1. The most common computing platform, a single processor workstation, is represent-
ed as a single node with no descendents (see table 8, A). It is not useful to divide the
processor into smaller units, so this solitary root node has no descendents and a capac-
ity of one. Unlike PMH, caches do not receive their own nodes.

2. A network of three workstations, each with four processors sharing a bus. If the
shared bus of each workstation is fast enough that explicit application support is not
required to avoid contention, then B could be used; each leaf represents a workstation
and has a capacity of four. If the effects of sharing a bus may be a problem, the tree
can be extended to give a leaf to each processor as in C. In this case, the leaves have
unit capacity but the interior nodes still have a capacity of four.

There are other possibilities. E could be used with twelve leaves each with unit capac-
ity if the bus local to each processor is much faster than the shared bus but the net-
work is not significantly slower, which might be appropriate for SCI connected
clusters. A would be used if the number of workstations could vary dynamically,
with a single leaf of non-unit capacity.
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3. An wide-area network of redundant workstation clusters. In this case (D), there are
two cooperating institutions, a and b, connected by the internet. Both institutions run
fault-tolerant single system image operating systems such as Solaris MC [58]. Institu-
tion a has two such system images connected by a high bandwidth fiber network.

The actual number of available nodes in any system image may vary as users come
and go, so no attempt is made to abstract that hardware entity as a fixed number of di-
visions. The capacity of each leaf is set when execution begins, based on system histo-
ry, other loads, or other heuristics.

4. Alarge MPP, such as a T3E or CM5. Supercomputers typically have a very expensive
communication fabric that can obviate the need for software attention to locality (A)
or result in a flattened tree (E).

The hardware tree in Sather

Just as zones are associated with software entities, in this extension zone objects are also
associated with each hardware entity. Zones created by the programmer are software zones,
and zones describing hardware are hardware zones. The tree of software zones is extended
by the hardware zone tree, the runtime interface describing the hardware to the program. The
hardware zone tree is created by the system before a program beings and must not change
during execution (nodes may not appear or disappear).

However, the hardware zone tree does not have to be a compile-time constant, and may
change from run to run. For example, on a network of workstations in which nodes may
be added on-the-fly, it is permissible for new executions to see the new nodes as long as
currently running programs do not. It also might be more productive for systems to dis-
tribute concurrent jobs into separate hardware units instead of time-sharing an entire ma-
chine. The zone tree would allow libraries on such a system to customize their behavior
for the hardware they are assigned for that particular run. Of course, compilation opti-
mized for a fixed target (i.e. by compile-time constant propagation) is also possible.

In the proposed extension, zones describing hardware and software form a single tree. The
hardware zone tree follows the within relation; contexts are within processors which are
within clusters which are within the whole machine. Taken together, the hardware and
software zones form a unified tree, with global at the root. Only those zone objects belong-
ing to the hardware tree represent a piece of hardware, and these additionally support the
methods are summarized in table 9:

global is a builtin expression that returns the root of the hardware zone tree. divisions re-
turns the number of divisions of the hardware zone, and division(n) may be used to select
one. As a convenience, the iterator divisions! is equivalent to division(divisions.times!). di-
visions returns zero if the zone is a leaf of the hardware zone tree. Table 10 illustrates the
use of these methods for the sample hardware zone trees presented in table 8.
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global:ZONE The root of the hardware zone tree. Special expression construct.
divisions:INT Number of divisions, if a hardware zone. If a leaf zone, returns zero.
division(INT):ZONE Return zone of n'™ division.
divisions!:ZONE Yield zone for each division.
capacity:INT Thread capacity of hardware zone.
division_of($OB):INT | Division of hardware zone that argument is within; the hardware parent

Table 9: Some built-in methods for examining the hardware zone tree. All but the first are methods

of the ZONE class.

Expression Tree A | Tree C | Tree D
global.divisions 0 3 2
global.division(0).divisions illegal 4 2
global.division(0) illegal 0 0

.division(0).divisions
global.capacity runtime 12 runtime
constant constant
global.division(0).capacity illegal 4 runtime
constant

Table 10: Expression evaluations for example platforms

Example
This code finds the maximum depth of the depth:INT is
hardware zone tree rooted at the current m = #MUTEX;
zone of execution. Threads are forked off res = 0; . I
velv f h divisi h 1 parloop div ::= here.divisions! do
recursively for eac le.ISIOI’I. The mu'tua d == depth @ div;
exclusion variable ‘m’ is used to avoid a lock m then res :=res.max(d) end
race condition when updating the local end;
variable ‘res’. return res + 1

end;

The implementation is responsible for binding each software zone to a hardware zone. If
the zone is a leaf of the hardware zone tree, then the placement of the thread or object to a
hardware entity (such as a processor) is exactly determined. However, if the zone is an in-
terior node of the hardware zone tree, the runtime may place the object or thread anywhere
within that hardware entity. Software zones, such as new zones created by forking
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threads, may similarly be placed anywhere within the most restrictive hardware entity
they are themselves within. When the operations on hardware zones (table 9) are applied
to software zones, they instead operate on the hardware zone to which that zone is bound.

The binding of the software zone tree to the leaves of the hardware tree must be transpar-
ent and may be dynamic. For example, the runtime may migrate threads or objects for load
balancing, and the movement of data in a cache coherent machine may be viewed as fine-
grain migration. When not bound explicitly to a hardware leaf at creation, there is no way
to later query which hardware leaf is being used for a particular thread or object; program-
mers must express their locality requirements through the use of software zones and trust
the runtime to place them appropriately.

The division of the hardware zone which encloses a given object is returned by
division_of(x). It is an error if x is not within the hardware zone of self.
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Placement examples

On platform 2 (three workstations each
with four processors) this code would have
the following implications:

* A new software zone is created for

main.

* A new software zone under the soft- main is -- Zone of execution is global
ware zone of main is created for the i o
thread t1, and any threads or objects it first_cluster := global.division(0);
creates will reside in that zone and thus 11
may be placed at, or migrated to, any- - t2 @ first_cluster;
where in the system. - t3 @ first_cluster.division(0);

o Any objects t? cr,eates will reside in the ob1 ::= #FOO:
first workstation’s memory and any ob2 ::= #FO0 @ first_cluster;
threads will be executed by one of the
first workstation’s processors. end;

¢ t3 will be executed only on the first pro-
cessor of the first workstation.

* ob1 may reside anywhere.

* 0b2 may reside only on the first work-
station.

global

first_cluster

/1\

t2 ob2 ‘ ob1 main
t3 t1
Figure 21: Zone tree created by code example. Black nodes are interior hardware zones, white

nodes are leaf hardware zones, and grey nodes are created by the program. Edges show the within
relation. Circles are zones, squares are objects and diamonds are threads.

The zone tree created by this program is shown in figure 21. The two grey zones were
created implicitly at thread creation. The above code is not portable because it does not
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check whether the root zone is divided before asking about its divisions.

This code tests the object ‘ob” to see if it is if where(ob).within(here) then
within the zone of execution. If itisn’t, a lo- | local_ob := ob;
: else
cal copy is created. eeal &5 = GheER
end;

Caching

Memory systems can be broadly categorized into those that cache remote references lo-
cally and those that do not. The section Memory Systems and Locality (page 14) sur-
veyed the mechanisms by which caching is implemented by hardware, software, or
both. The important difference to the programmer is that caching systems have a very
different performance model in which reads become fast at the expense of making writes
slower®. A tuned caching system allows the memory system resources to scale with the
number of readers without imposing a central bottleneck.

Algorithms can have profoundly different scaling behavior depending on how the under-
lying memory references scale with the number of processors. A portable hardware ab-
straction needs to reflect this, making it possible for a programmer to exploit caching when
it is available without requiring it when it is not. For example, on a network of worksta-
tions cache coherency is implemented in hardware within a workstation but must be im-
plemented in software, for a high price, at the network level. The overhead of caching at
the network level must not be imposed on programs that do not need it in order to scale.

In this extension, classes that depend on caching behavior are marked with the cached key-
word. This tells the compiler and runtime that the programmer depends on scalable read
performance. Classes that are not annotated in this way are not guaranteed to have scal-
able read performance.

6. The cost of a write may be considered amortized over subsequent reads. Consistency models are orthogonal
to the memory system performance semantics in that they only change the timing dependencies of reads and
writes to the thread, not their relative costs when they do occur.
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Example

Distributed data structures frequently re-

quire a directory in which to record the lo-

cation Qf the co.rnpor}ents; such s.tr'u.ctgres cached class DIR{T} is
are typically written just once at initializa- include ARRAY{T}:;
tion, making them ideal for caching. This end

class behaves just like an array, but avoids a

central bottleneck by requiring the runtime

to cache remote accesses if this is not al-

ready provided by hardware.

EXAMPLE: DISTRIBUTED VECTOR

This section demonstrates the construction of a portable distributed vector class using ex-
tended zones. Examples include routines for creation, vector addition, random element ac-
cess, and iteration. These routines are typical of the coding required for any distributed
class which has a fixed structure after creation and supports both parallel synchronous op-
erations and asynchronous random access.

On parallel platforms there are often vector libraries specifically tuned to the hardware.
The code below is not intended to supplant machine-specific libraries, which should al-
ways be used in place of portable but slower code. An application remains portable if it
uses libraries in which vectors are implemented in the best way for that machine. This vec-
tor implementation can be seen as a fall-back when special libraries are not available, and
a demonstration of coding techniques that are applicable to other data structures for which
tuned versions are infeasible. In particular, distributed hash tables can be constructed us-
ing very similar code.

In this implementation, the distributed vector structure is determined at creation by exam-
ining the hardware zone tree. The internal representation is also a tree; vector operations
are implemented by recursively dividing the vector into subranges. Leaves of the tree are
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the primitive vector class VEC. A supertype $DVEC over VEC and DIST_VEC allows both
leaves and interior nodes to be children of any interior node. The framework looks like
this:

abstract class $DVEC > VEC is -- Supertype
plus(arg:$DVEC):SAME; - Vectors may be added to each other
elt!:FLT; -- Vectors may be iterated over
-- Other methods not shown
end;
cached class DIST_VEC < $DVEC is -- Subtype
private include ARRAY{TUP{$DVEC,INT}} -- Tuples of children and first index
elt! -> ARRAY _elt!; -- Rename array iterator; we’ll redefine it
const minrange:INT:=64; -- Minimum tolerated elements in a leaf
- Other methods not shown
end;

Because this distributed vector class is built on the primitive VEC class, it will automatical-
ly take advantage of any special compiler or hardware support for dense vector operations.
Zone annotations are applied to the VEC objects without affecting the correctness of their
code. Zones may generally be added to existing code to improve performance without af-
fecting correctness, and complement conventional coding for locality such as explicit tiling
and prefetching.

Creation

The creation routine is shown in table 11. It builds the distributed vector tree recursively
in parallel, following the shape of the hardware zone tree. At each branch in the tree, a
decision is made about how may subranges to divide into to meet the following con-
straints:

There must be exactly one DIST_VEC object per interior node.

There may never be more threads in a subtree than its capacity.

There may be no more than minrange elements per thread.

Ao N~

Subranges should balance the vector by capacity of the subtrees.

When subtrees complete their creation, they fill in the tuple array elements in the parent
DIST_VEC object.

A major liability of this creation routine is that there is no optimization of placement ac-
cording to the memory system details. For example, on some systems it would be better to
avoid distributing across the upper divisions because more is lost in overhead than gained
in parallelism. On other systems, not distributing a vector could leaed to a working set
larger than the cache size. The optimal choice depends on details of the memory structure
and usage patterns, and sometimes subtle changes in placement can effect dramatic shifts
in performance [48]. The zone model extension does not attempt to provide performance
portability to this degree, but does not rule out compiler optimizations, machine specific
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private div_up(a,b:INT):INT is return (a+b-1)/b end;--Integer divide, rounding up.

create(sz:INT):$DVEC is
-- Compute total number of threads to be created in all leaves
elts_per_thread::=div_up(sz,capacity).min(minrange);
threads:=div_up(sz,elts_per_thread);

children:INT; -- Compute number of children
if here.divisions=0 then
children:=threads; - At a leaf of the hardware zone tree
else
children:=threads.min(divisions); -- Not at a leaf
end;
if children=1 then return #VEC(sz); -- If a single child, just make a leaf
else
res::=new(children); -- Otherwise, make a new DIST_VEC
parloop -- Create children in parallel
subsize:INT; -- Size of this child
z:ZONE; -~ Zone for this child
i::=children.times!;
if here.divisions=0 then -- At a leaf
subsize:=elts_per_thread;
z:=here; -- Place within current zone
else -- Not at a leaf

t::=here.division(i).capacity.min(threads);-- Distribute by thread capacity
subsize:=t*elts_per_thread;
threads:=threads-t;

z:=here.division(i); -- Place on child hardware zone
end;
start:=sum!(subsize); -- Index is sum of prior sibling sizes
do
res[i]:=#TUP(#SAME (subsize) @ z, start);
end;
return res;
end;

end;

Table 11: Distributed vector creation routine

libraries, or more detailed extensions to the model. For example, hardware zones could be
extended with methods to query expected bandwidth, latency, and overhead. Such infor-
mation could be profitably used here without requiring further language changes.

Vector addition

Table 12 shows distributed vector addition, a bulk parallel operation which can be com-
puted recursively in parallel. The vectors being added together are expected to be
aligned; both the vector data in the VEC leaves as well as the interior DIST_VEC nodes
are expected to be placed as they would have been by create. A vector tree created at
the same zone will always have subranges placed at corresponding zones. This property
is exploited by creating the result vector aligned to self without needing the more compli-
cated code in create.
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plus(arg:$DVEC):SAME

pre size=arg.size and where(self)=here -- Require correct alignment
is
typecase arg when DIST_VEC then -- Always true if aligned
res::=new(size);
parloop i::=size.times! do -- Add children in parallel
chunk::=[i].t1;
argchunk::=arg[i].t1;
assert where(chunk)=where(argchunk); -- Assert is true if aligned
res[i]:=#(chunk+argchunk @ where(chunk), [i].t2);
end;
return res;
end;
end;

Table 12: Distributed vector addition

The assert statement that preceeds the subrange addition indicates the programmer’s in-
tention that the nodes are aligned; only local communication is needed to perform the ad-
dition for leaves. Assertions are a kind of checkable comment, verified at runtime if
checking is on. The compiler may exploit the assertion and generate code specialized for
the known co-locality of chunk and argchunk. The precondition in the routine header may
also be used in this way.

This code creates a new vector for the result. High performance computing would more
typically add in place, storing over the original value for self. Such an addition method
would be very similar but would suggest additional synchronization at the top level to de-
tect or avoid concurrent operations modifying the value of self.

Random access

In Sather, the bracket ‘[...]’ notation is syntactic sugar for a call on the routine aget. Table
13 shows an implementation of aget for the distributed vector. Random element access

aget(idx:INT):FLT is

loop -- Find which child index is in
i::=0.upto!(size-2); -- (could also use binary search).
whilel([i+1].t2<idx);

end;

child::=[i].t1;

startidx::=[i].t2;

return child[idx-startidx] @ where(child); -- Pass request to child recursively.

end;

Table 13: Distributed vector random access

is different from the previous operations in that it must be very lightweight; it is impor-
tant that many concurrent accesses do not bottleneck at a central directory, such as the
root of the distributed vector tree.



92 Example: Distributed Vector

There is expected to be much less data in the interior nodes where all directory information
resides than at the leaves. In bulk synchronous operations such as parallel add, the direc-
tory nodes are each visited once, as is each leaf. For random element access, however, the
interior nodes are visited once for each element below them.

Here it is important that the DIST_VEC class is labeled cached (see page 87). The interior
nodes of the vector tree are ideal for caching because once initialized, they are never again
modified. The first reference to the top node will stored locally and subsequent accesses
will be fast. Nevertheless, this will require extra data replication; although the interior
nodes are much smaller than the leaves, the number of interior nodes visited on any ele-
ment access is proportional to the height of the tree, so for some sufficient depth the mem-
ory required to replicate the directory will dwarf the memory used for actual data.
Similarly, hardware trees with extreme branchiness (i.e. E in table 8) increase the amount
of directory data that must be cached. On cache coherent systems, eventually this directory
data will cause capacity misses in the local cache; on systems with compiler supported
caching there may be a similar loss of locality and diminishing space available for vector
data.

At the time of this writing most systems are flat, with at most three levels. Those systems
which are very branchy are MPPs which tend to have very aggressive low latency memory
networks (T3E, Tera), suggesting a single global node of high capacity rather than a tree.
In short, the directory caching problem is expected to be the worst on those machines on
which it matters the least, because they do not have deep or branchy hardware trees. MPPs
are also more likely to have special tuned libraries. The old language construct spread
(page 58) was intended to deal with precisely this problem of replicated directory structure
and remains a complementary possibility.

Exploiting iteration locality

Sather supports iterators at a language level, treating them as methods like routines [72].
Table 14 shows a vector iterator customized to take advantage of the locality present in the
leaves, copying each leaf vector to the zone of execution before iterating over it. The copy
method in VEC is primitive, and can be trusted to use efficient bulk transfers when copying
remotely.

The code for vector addition required that the argument be aligned to self. Alternately, the
code could have accepted a misaligned structure and made local aligned copies of the
leaves explicitly as above.
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elt!:FLT is -- Naive implementation
loop
c::=ARRAY_elt;
loop yield c.elt! end;
end;
end;

eltFLT is -- Implementation that exploits locality
loop
c::=ARRAY _elt!;
typecase ¢
when VEC then
if ~where(c).within(here) then -- Is it local?

c:=c.copy @ here; -- If not, get a local copy
end;
loop yield c.elt! end; -- Known to be local

when DIST_VEC then
loop yield c.elt! end;
end;
end;
end;

Table 14: Distributed vector iteration
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Conclusion

The first three chapters discussed prior work on locality and concluded that there are se-
vere limitations with existing methodologies. The last two chapters introduced the zone
model and an extension to address these problems. Now we conclude with a summary
of what has been achieved and the shortcomings of this work, which suggest directions
for further research.

SUMMARY

The methods used to create high performance systems often directly interfere with meth-
ods for programming in the large. In particular, portability and modularity are often di-
rectly at odds with the needs of performance.

This thesis proposes a solution to part of this problem: how to deal with memory systems.
Caching memory systems maintain the illusion that all memory access is uniformly fast.
However, this is a deception. Hardware trends have been increasing the distance to mem-
ory so that performance is becoming increasingly dependent on software locality. With ex-
isting methods, software locality is in turn dependent on memory system specifics; as a
result, performance is neither portable nor compositional.

Perspective on locality

System components - memory systems, applications, compilers and operating systems -
are unable to truly cooperate because they are not able to talk to one another. Obtaining
good locality requires knowing target memory system characteristics - such as the sizes of
blocks, cache sizes, and division into processor clusters. There are no standardized, porta-
ble interfaces through which memory system characteristics can be discovered by soft-
ware. There is also no standard representation of locality characteristics of software that
can guide the compiler and runtime. The lack of standard representations forces systems
to be constructed of many independent pieces, each attempting to solve part of the locality
picture in isolation, or at best with clumsy, piecemeal information.
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Specific examples of this failure to communicate include:

* Applications may ask the operating system about the page size, but it is difficult or
impossible to discover cache sizes or which pages are currently resident.

¢ Compilers may insert prefetching or vector instructions to inform the memory system
about future accesses, but they must do so blind to the programmer’s intended locali-
ty relationships for the objects the code manipulates.

* Operating systems can attempt to reschedule threads on processors on which they
previously executed to improve temporal locality, but are unable to know if doing so
may create false sharing with another currently scheduled thread.

A more expressive representation of locality is required to allow this cooperation between
components. To facilitate programming, however, the representation must be usable by
programmers in daily practice. This requirement lead to the review of locality performance
models and the development of a taxonomy to describe them.

Locality performance models may be categorized as implicit or explicit. Most performance
models are implicit, requiring programmers to understand lower level implementation of
the programming system they use. For example, high performance programming with ar-
rays on vector machines requires some understanding of how compilers vectorize. In con-
trast, explicit performance models simply force the programmer to deal with hardware
limitations directly, requiring the use of explicit messaging and matrix and vector libraries.
Some explicit models may be further distinguished as annotative. Annotative models are a
compromise allowing application expressiveness and correct semantics to not be impacted
by locality; for instance, compiler directives in comments may suggest vectorization with-
out requiring the structure of code to change.

Zomnes

The high level, annotative pure zone model was proposed to rectify the limitations of exist-
ing performance models. Pure software zones describe the locality structure of software
by organizing it as a tree. The programmer relies on the compiler and runtime to dynami-
cally map threads and objects onto hardware units such as processor clusters, pages, or
cache lines. This indirection allows programmers to reason in the abstract about perfor-
mance instead of worrying about the complexities of specific hardware.

Pure zones are a rigorously portable abstraction because they do not allow any represen-
tation of hardware. Pure zones enable modularity, because the recursive zone tree may be
used to describe the composition of software modules. However, the zone tree is also easy
to extend to incorporate concrete details about memory system hardware when that is de-
sired. For example, the penalty for communication between processing nodes may be so
large that it is desirable to structure computation to reflect the underlying hardware. One
possible extension to the pure zone model is the hardware zone tree, which describes divi-
sions of hardware using the same tree used for software.
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An implementation of the pure zone model was created for the ICSI Sather system. This
implementation made informed use of the parameters of the underlying memory system
and gave consideration to the locality of memory management. Improved performance
was demonstrated for a handful of applications and was most impressive on shared mem-
ory systems. This implementation was limited in significant ways by limitations of the im-
plementation such as compilation through C, poor operating system support for threads,
difficulty of multiprocessor memory system analysis, and a shortage of large Sather appli-
cations for benchmarking. The observed performance, in spite of these limitations, under-
scores the potential of zones when these limitations are overcome.

Zones are least motivated when existing techniques for obtaining locality suffice - such as
for codes that can be expressed in terms of dense linear algebra operations. However, in
many programs there is not such a kernel which can be microengineered for locality. For
these programs, zones can complement the locality of carefully engineered kernels and
provide the modular glue needed to obtain true portable memory system performance.

FUTURE DIRECTIONS

The implementation of zones described for the ICSI Sather system was effective but not
particularly aggressive; all benefits were gained only from changing layout in memory,
but there are many other possibilities. The section considers directions for further work
on zone implementation and performance models.

Migration and scheduling

Compatibility with C compilation is an enormous boon to portability, but severely con-
strains memory management. Not being able to identify pointers precisely makes it diffi-
cult to relocate objects. If objects were relocatable, the zone tree could be used to guide their
placement during garbage collection with not much overhead beyond that required by
conventional copying collection. For example, objects could be placed with all objects of a
single zone together contiguously in a depth-first traversal of the zone tree. This layout
would produce locality that would more closely mirror the performance model that the
tree suggests than the implementation discussed here.

The counterpart to the placement of objects in memory is the placement of threads in time.
Although the zone model addresses both threads and objects, this implementation did not
attempt to modify thread scheduling to execute threads in related zones together or to
guide their placement on processors or clusters. The principle reason for this omission was
the lack of Solaris system facilities for manipulating thread schedules and placement. The
present implementation has to operate blind, guessing to get initial object placement right
and relying on Solaris for thread scheduling.
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The distributed implementation is not yet fully functional. Enabling the migration of ob-
jects and threads between nodes would allow load balancing heuristics to make use of the
zone tree, potentially allowing both improved locality as well as higher processor utiliza-
tion. When objects and threads can be moved, it is possible to recover from a poor initial
choice of placement as well as adapt to different phases of computation.

A project is underway to replace Solaris threads with a custom facility that will bypass the
Solaris thread implementation, making it possible to coschedule threads for locality and ef-
ficiency [100]. Another possibility is the integration of the management of Sather high-level
locks with zones. For example, a choice between which of two threads to unblock could be
made in favor of the temporal locality suggested by the zone tree.

On-line performance feedback

It is difficult to analyze systems as large as an executing multithreaded Sather program. In
particular, it is hard to obtain information about what the memory system is doing. Con-
ventional tools for understanding memory system behavior rely on gathering traces and
analyzing them off-line. This is less effective for multiprocessing systems for many rea-
sons. Synchronization between threads can be sensitive to small changes in timing, so re-
cording the traced data can change the flow of control of nondeterministic codes. The
quantity of data in a multiprocessor is necessarily greater than a serial code and consumes
more space, affecting locality. Finally, the multiplexing of threads to processors requires
tools carefully integrated with the thread system to perform other than gross statistical
analysis of behavior. For example, context switches must be recorded in order to determine
which thread is responsible for particular cache misses.

Many microprocessors now have integrated performance counters that can be used to
count events such as cache misses without substantially impacting code [53, 90]. Unfortu-
nately, few operating systems make these available to user programs. User-level perfor-
mance counters would make it much easier to characterize the impact of zones. More
runtime information would allow new development tools. For example, individual zones
could be evaluated for their effectiveness as part of profiling; it may also be possible to sug-
gest potential zonings to the programmer based on heap analysis. If runtime environments
could be made rich enough to determine the locality of objects and threads dynamically,
the performance benefits of zones might even be possible without requiring any program
annotations.

Libraries

Using Sather 1.1 language primitives, higher level libraries can be constructed to perform
scheduling and mapping. Gomes [44] provides libraries that take as input a hierarchical
dataflow description of neural nets. Through a combination of programmer estimation and
trial runs, the libraries are able to produce a schedule and assignment of computation to
nodes that respects communication requirements as well as load balancing.
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The tree representation of zones is very general and convenient, but lacks expressiveness.
For example, scheduling dependencies are often known in greater detail - for example, be-
cause the code is expressed as the evaluation of a data-flow graph, or through compile-time
analysis of the synchronization constructs in a program [100]. It might be especially prof-
itable to combine compilation techniques to avoid synchronization with scheduling and
placement of locality trees. This also suggests that the implementation of zones be carefully
integrated into thread and lock management.
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Appendix:
The Sather Language

This appendix presents Sather, an object-oriented language built on by the preceeding
chapters. A brief language overview is given, with elaboration only of language features
potentially unfamiliar because they have no analogue in C++. The threaded, synchroniza-
tion and distributed extensions are fully specified; the distributed extension is also present-
ed separately on page 47.

Coverage of Sather is useful to this work for several reasons. Sather is representative of a
large class of imperative languages, but was designed specifically with performance and
programming in the large. The threaded and synchronization extensions enable parallel
processing and were carefully codesigned with the serial language, forming an appropri-
ate foundation for exploratory design of the zone distributed extension.

SATHER

Sather is an object oriented language designed to be simple, efficient, safe, and non-pro-
prietary. It aims to meet the needs of modern research groups and to foster the develop-
ment of a large, freely available, high-quality library of efficient well-written classes for a
wide variety of computational tasks. This section briefly describes the Sather language
and gives an overview of the ICSI implementation, which includes serial, parallel, and
distributed implementations. The following sections expand implementation details rele-
vant to portable and modular performance.

Language overview

Sather has adopted ideas from a number of other languages. It was originally envisioned
as a cleaned-up, efficient version of Eiffel, but now incorporates ideas and approaches
from many languages. One way of placing it in the ‘space of languages’ is to say that it



100 Sather

attempts to be as efficient as C, C++, or Fortran, as elegant but safer than Eiffel or CLU,
and to support higher-order functions as well as Common Lisp, Scheme, or Smalltalk.
Cecil, ML, Modula-3, Oberon, School, and Self also influenced the language design. Al-
though Sather predates Java, the languages have striking similarities, such as garbage
collection, dynamic dispatch, assertions, and strong typing. Sather additionally offers
multiple inheritance, parameterized classes and higher performance than Java, but does
not attempt to address Java’s design goals of security or dynamic loading of code.

There have been two generations of Sather. The original language was most indebted to
Stephen Omohundro with contributions by Chu-Cheow Lim, Heinz Schmidt, Jerome Feld-
man and Franco Mazzanti. The first parallel Sather compiler was implemented by Chu-
cheow Lim on the Sequent Symmetry, Sun workstations and the CM-5. A group at the Uni-
versity of Karlsruhe under the direction of Gerhard Goos also created a compiler for Sather
0.1. The language their compiler supported later diverged from the ICSI specification.

Sather 1.0 was a major language change, introducing bound routines, iterators, proper sep-
aration of typing and code implementation, contravariant typing, strongly typed parame-
terization, exceptions, stronger optional runtime checks and a new library design. The new
language design effort involved many people; the compiler was a completely fresh effort
by Stephen Omohundro and David Stoutamire. The parallel language design was largely
due to Stephan Murer and David Stoutamire.

The language used throughout this document is Sather 1.1, an incremental improvement
to 1.0. That compiler is the work of David Stoutamire, Michael Philippsen, Claudio Fleiner,
and Boris Vaysman. Unlike previous specifications, in 1.1 the parallel and distributed ex-
tensions present a shared memory abstraction to the programmer while allowing explicit
placement of data and threads.

A few of the language features are touched on here. Only concepts important to Sather that
the reader that are not familiar to users of C++ are covered. The intention is to provide con-
text in which to place the description of implementation specific to zones; other sources ex-
ist for the language specification [88], tutorial [74], design [89], and evangelization [87].

Garbage collection and checking

Like many object-oriented languages, Sather is garbage collected, so programmers never
have to free memory explicitly. The runtime system does this automatically when it is
safe to do so. Idiomatic Sather applications generate far less garbage than typical Small-
talk or Lisp programs, so the cost of collecting tends to be lower. Sather does allow the
programmer to manually deallocate objects, letting the garbage collector handle the re-
mainder. With checking compiled in, the system will catch dangling references from
manual deallocation before any harm can be done.
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More generally, when checking options have been turned on by compiler flags, the result-
ing program cannot crash disastrously or mysteriously. All sources of errors that cause
crashes are either eliminated at compile-time or funneled into a few situations (such as ac-
cessing beyond array bounds) that are found at run-time precisely at the source of the er-
ror.

No implicit calls

Sather does as little as possible behind the user's back at runtime. There are no implicitly
constructed temporary objects, and therefore no rules to learn or circumvent. This ex-
tends to class constructors: all calls that can construct an object are explicitly written by
the programmer. In Sather, constructors are ordinary routines distinguished only by a
convenient but optional calling syntax. With garbage collection there is no need for de-
structors; however, explicit finalization is available when desired.

Sather never converts types implicitly, such as from integer to character, integer to floating
point, single to double precision, or subclass to superclass. With neither implicit construc-
tion nor conversion, Sather resolves routine overloading (choosing one of several similarly
named operations based on argument types) much more clearly than C++. The program-
mer can easily deduce which routine will be called.

In Sather, the redefinition of operators is orthogonal to the rest of the language. There is
“syntactic sugar’’ for standard infix mathematical symbols such as ‘+" and ‘" as calls to oth-
erwise ordinary routines with names ‘plus” and ‘pow’. ‘a+b’ is just another way of writing
‘a.plus(b)’. Similarly, ‘a[i]’ translates to ‘a.aget(i)’ when used in an expression. An assign-
ment ‘a[i] := expr’ translates into ‘a.aset(i,expr)’.

Separation of subtyping and code inclusion

In many object-oriented languages, the term ‘inheritance’ is used to mean two things si-
multaneously. One is subtyping, which is the requirement that a class provide implemen-
tations for the abstract methods in a supertype. The other is code inheritance (called code
inclusion in Sather parlance) which allows a class to reuse a portion of the implementa-
tion of another class. In many languages it is not possible to include code without sub-
typing or vice versa.

Sather provides separate mechanisms for these two concepts. Abstract classes represent in-
terfaces: sets of signatures that subtypes of the abstract class must provide. Other kinds of
classes provide implementation. Classes may include implementation from other classes
using a special ‘include’ clause; this does not affect the subtyping relationship between
classes. Separating these two concepts simplifies the language considerably and makes it
easier to understand code. Because it is only possible to subtype from abstract classes, and
abstract classes only specify an interface without code, sometimes in Sather one factors
what would be a single class in C++ into two classes: an abstract class specifying the inter-
face and a code class specifying code to be included. This often leads to cleaner designs.
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Bounded parametric polymorphism

Parametric polymorphism is the static parameterization of code by a type. This is what
C++ calls templates; there is no equivalent in Java. Because of Sather’s carefully de-
signed contravariant rules for subtyping, it is possible to statically check parameterized
classes for type safety no matter what types are later plugged in. This is essential for
modular software engineering, because the writer of a parameterized class will never be
able to test the class with every conceivable type plugged in by a client in advance. The
contravariant subtyping rules also eliminate the need for implicit type checks at runtime,
required in both Eiffel and Java.

Iterators

Early versions of Sather used a conventional ‘until...loop...end” statement much like other
languages. This made Sather susceptible to bugs that afflict looping constructs. Code
which controls loop iteration is known for tricky “fencepost errors” (incorrect initializa-
tion or termination). Traditional iteration constructs also require the internal implementa-
tion details of data structures to be exposed when iterating over their elements.

Simple looping constructs are more powerful when combined with heavy use of cursor ob-
jects (sometimes called ‘iterators’ in other languages, although Sather uses that term for
something else entirely) to iterate through the contents of container objects. Cursor objects
can be found in most C++ libraries, and they allow useful iteration abstraction. However,
they have a number of problems. They must be explicitly initialized, incremented, and
tested in the loop. Cursor objects require maintaining a parallel cursor object hierarchy
alongside each container class hierarchy. Since creation is explicit, cursors aren't elegant
for describing nested or recursive control structures. They can also prevent a number of
important optimizations in inner loops.

Experience with cursor objects led to the addition to the language of iterators, methods that
encapsulate user defined looping control structures just as routines do for algorithms [71].
Code using iterators is more concise, yet more readable than code using the cursor objects
needed in C++. Itis also safer, because the creation, increment, and termination check are
bound together inviolably at one point. Each class may define many sorts of iterators,
whereas a traditional approach requires a different yet intimately coupled class for each
kind of iteration over the major class. Sather iterators are part of the class interface just like
routines.

Iterators act as a lingua-franca for operating on collections of items. Matrices define itera-
tors to yield rows and columns; tree classes have recursive iters to traverse the nodes in
pre-order, in-order, and post-order; graph classes have iters to traverse vertices or edges
breadth-first and depth-first. Other container classes such as hash tables, queues, etc. all
provide iters to yield and sometimes to set elements. Arbitrary iterators may be used to-
gether in loops with other code.
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Closures

Sather provides higher-order functions through method closures, which are similar to clo-
sures and function pointers in other languages. These allow binding some or all argu-
ments to arbitrary routines and iterators but defer the remaining arguments and
execution until a later time. They support writing code in an applicative style, although
iterators eliminate much of the motivation for programming that way. They are also use-
ful for building control structures at run-time, for example, registering call-backs with a
windowing system. Like other Sather methods, method closures follow static typing
and behave with contravariant conformance.

Immutable and reference objects

Sather distinguishes between reference objects and immutable objects. Immutable objects
never change once they are created. When one wishes to modify an immutable object, one
is compelled to create a whole new object that reflects the modification.

Experienced C programmers immediately understand the difference when told about the
internal representation the ICSI compiler uses: immutable types are implemented with
stack or register allocated C “struct’s while reference types are pointers to the heap. Because
of that difference, reference objects can be referred to from more than one variable (aliased),
but immutable objects never appear to be. Many of the built-in types (integers, characters,
floating point) are immutable classes. There are a handful of other differences between ref-
erence and immutable types; for example, reference objects must be explicitly allocated,
but immutable objects ‘just are’.

Immutable types can have several performance advantages over reference types. Immuta-
ble types have no heap management overhead, they don't reserve space to store a type tag,
and the absence of aliasing makes more compiler optimizations possible. For a small class
like ‘CPX’ (complex number), all these factors combine to give a significant win over a ref-
erence class implementation. Balanced against these positive factors in using an immuta-
ble object is the overhead that some C compilers introduce in passing the object on the
stack.

Immutable classes are never strictly necessary; reference classes with immutable semantics
work too. For example, the reference class ‘INTI" implements immutable infinite precision
integers and can be used like the built-in immutable class ‘INT". The standard string class
‘STR’ is also a reference type but behaves with immutable semantics. Explicitly declaring
immutable classes allows the compiler to enforce immutable semantics and provides a hint
for efficient code generation.
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pSather

Parallel Sather (pSather) is a collection of parallel extensions to the serial language. They
extend serial Sather with threads, synchronization, and data placement. The Sather 1.1 dis-
tributed extension allows the placement of threads and objects on specific clusters of pro-
cessors. The zone extensions described in the chapter Zones (page 50) are alternate ways of
expressing placement.

pSather differs from concurrent object-oriented languages that try to unify the notions of
objects and processes by following the actors model [64]. There can be a grave performance
impact for the implicit synchronization this model imposes on threads even when they do
not conflict. While allowing for actors, pSather treats object-orientation and parallelism as
orthogonal concepts, explicitly exposing the synchronization with new language con-
structs.

pSather follows the Sather philosophy of shielding programmers from common sources of
bugs. One of the great difficulties of parallel programming is avoiding bugs introduced by
incorrect synchronization. Such bugs cause completely erroneous values to be silently
propagated, threads to be starved out of computational time, or programs to
deadlock. They can be especially troublesome because they may only manifest themselves
under timing conditions that rarely occur (race conditions) and may be sensitive enough
that they don't appear when a program is instrumented for debugging (heisenbugs).

pSather makes it easier to write deadlock and starvation free code by providing structured
facilities for synchronization. A lock statement automatically performs unlocking when its
body exits, evenif this occurs under exceptional conditions. It automatically
avoids deadlocks when multiple locks are used together. It also guarantees reasonable
properties of fairness when several threads are contending for the same lock. These seman-
tics are obtained with extra runtime mechanisms not presented here, but discussed in
[37, 44, 77].

Implementation overview

The initial Sather system (“version 0”) was written over the summer of 1990 and soon re-
leased for public use. The 1.0 compiler design, begun in 1993, was heavily influenced by
lessons learned from the earlier compiler. Two of these are remarkable because they con-
tradict conventional academic compiler design principles. The lessons were that the utili-
ty of compiler construction tools is sometimes overstated, and heavy object-orientation
may obscure an overall compiler design.

The Sather 0 compiler was a blend of lex, yacc, C and Sather. This required excessive com-
munication between language domains which created configuration woes, and hindered
debugging. In contrast, the 1.0 compiler is entirely in Sather, aside from a small runtime in
C. The scanner and parser are both hand-written and only a very small part of the compiler.
The resulting simplicity more than makes up for the use of an imperative style for those
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pieces. Automated tools make sense for prototyping while a language definition is chang-
ing, but this is not as important for production compiler code.

Another important lesson later applied to the 1.0 compiler was that it can be poor software
engineering to over-use polymorphism. The 0.x compiler was written with a class for each
syntactic construct, with many dispatched methods corresponding to stages of compila-
tion. As aresult, the code executing for a given phase and its data dependencies were scat-
tered over many files and difficult to find or change. In the 1.0 compiler, code was instead
grouped by functional stage. This creates a stronger typing, by separating objects that
would persist over the entire compilation with fields only meaningful in some stages into
distinct object classes with only the fields relevant to each stage of compilation.

A major goal of the ICSI compilers was portability. This led to compilation through ANSI
C code. The use of C as a portable assembly language influenced other design decisions;
for example, C compilers can be expected to perform basic optimizations such as constant
folding and register allocation, so the compiler design was not directly concerned with per-
forming those optimizations. On the other hand, an understanding of the limitations of C
compiler optimizers guided the selection of optimizations that the Sather compiler does
perform.

The compiler uses two primary intermediate representations, the abstract syntax and ab-
stract machine. In the abstract syntax tree, each node corresponds to a syntactic Sather en-
tity. Sather source files are scanned and parsed by recursive descent. For parsimony in
small programs, library source files are parsed only as the classes they contain are required.
From the abstract syntax trees, all types, parameterizations, and interfaces of types are con-
structed and verified for type conformance. Once this has been done it is possible to build
the implementations of each class; this is a flattening of parameterizations by parameter
specialization. Specializing each instance of a parameterized class is similar to the way C++
compilers handle templates, and provides many opportunities for optimization.

Translation

Each reachable method is translated from the abstract syntax to abstract machine form. The
nodes of AM trees correspond closely to C constructs and high level runtime events such
as maintaining the exception stack, allocating an object or initializing an iterator. Transla-
tion occurs method by method, depth first, starting with the routine main. Unreachable
code is not translated.
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Inlining, optimizations, and type checking of method calls also occur at this time. Every
method called is translated before translation of that method begins. After translation of a
method, the suitability of methods for inlining and type-guided side-effect information for
optimizations occurs, so this information is available to the calling method when it is trans-
lated. Sather optimizations include:

¢ Inlining is performed on small routines and iterators. Many common iterators, such
as those to traverse arrays, also have special C translations that avoid loop overhead
and use pointer arithmetic. The ability to do such inlining is not universal in C compil-
ers and painful when it crosses source file boundaries. Similarly, iterators operate on
state associated with a loop that persists across individual iterator calls; this is too
much to expect a C compiler to handle well.

¢ Common subexpression elimination is performed, as well as hoisting of loop invari-
ant expressions. Because full type-guided side-effect information is available and all
source files are compiled together, the analysis of the Sather compiler can be better in-
formed than what a C compiler can do by alias analysis.

¢ Special optimizations are performed for many Sather idioms, such as reassignment of
immutable object fields and hoisting of iterator arguments with single-evaluation se-
mantics. Again, these are exploitations of Sather semantics that are stronger than that
reflected in the generated C code. Emperically, it was observed that many C compilers
do a poor job with C structs, requiring assistance from the Sather compiler to get val-
ues off the stack and into registers. Similarly, C semantics guarantees that offset of
struct fields must reflect the declaration order, while Sather semantics allows the com-
piler to reorder the fields to minimize fragmentation.

® The weak consistency model of Sather allows code motion of loads and stores. These
optimizations are most important for distributed Sather, in which the overhead for a
remote memory event may be hundreds of instructions. Additional mechanisms such

as software caching and optimizations of common synchronization patterns are also
available [37].
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C generation

Once the abstract machine form has been generated, it is converted to C. The code genera-
tor was designed to meet many constraints.

® The generated code has to be portable; strictly ANSI-compliant C is emitted.

e It must be possible to have symbolic information emitted for debugging. The compil-
er emits readable C structs, and C debuggers may be used as they are, with “#line” di-
rectives inserted in the generated code. The generated code must be readable on
demand. In addition to indented code, optional explanatory comments are inserted
and the mangling of the Sather namespace to C must be reasonable.

* Giant C files tend to break compilers, time out, or thrash systems to death. For exam-
ple, some C compilers and assemblers require time and space much greater than lin-
ear in the source file size. To keep C compilation possible, multiple C files are
generated.

¢ C compilation is the bottleneck in compilation, so it should be kept fast. This means
that the generated files must be appropriate for a parallel make utility. In addition, to
amortize startup overhead files must not be too small; more than one class must go in
a file. Only header information actually needed by a C file is be generated.

¢ When possible, C compilation should be incremental. Most changes to programs are
very small, and should be reflected by smaller compile times. This means that global
headers are a bad idea: if they change, all C files must be regenerated. Code is clus-
tered in the C files to keep most changes local, and the namespace mapping attempts
to not propagate changes between C files when it can be avoided. The name mangling
must avoid symbols with alternative meaning, such as “printf”.

Many of these goals interfere with one another. For example, the name mangling can’t be
deterministic because a generated name might collide with a reserved identifier, but if it
isn’t deterministic, then it is possible for “name-space pressure” to change the mapping
used in other files, breaking incremental compilation.

A collection of heuristics was arrived at after exhaustive experimentation. A separate
namespace is managed for each C entity, such as a struct. C names are constructed deter-
ministically from the Sather namespace (for example, the routine FOO::bar(BAZ) is
mapped to “FOO_bar_BAZ”. When namespace collisions occur or the mapping would col-
lide with a forbidden identifier (such as “printf”) an alternative name is generated by deter-
ministically appending an integer which will resolve the collision.

Routines are clustered by the class they are in. Decisions about what files to create and
which classes to place in them is deferred until all C code is generated. Code for each of
the classes is then merged, attempting to create C files of approximately the same length.
Header information is generated for each of the resulting files separately, and must be sort-
ed into a canonical order while respecting the struct’s topological order in order to guaran-
tee the same order of generation for each compile.

To enable incrementality, a hash value is generated for each file which is compared against
the previous hash of that file; files are overwritten only when they change. A make utility
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can then recompile only the files which have changed. A more aggressive compiler design
would attempt to recompute all of its internal information incrementally, such that it could
output the C which had changed without generating the C and doing the comparison.

Runtime

Generated code is customized for the target mostly by hooking into a runtime customized
for that target, and sometimes additionally emitting different code sequences. Much of the
runtime customization is handled by the C preprocessor, so there is no execution penalty,
although programs may be slower to compile. For example, Sather allows many kinds of
optional runtime checks to allow catching errors such as overflow and access to destroyed
objects. These are implemented by macros, themselves controlled by a compiler command
line switch. Other customizable runtime facilities include the maintenance of data struc-
tures associated with exceptions, threads, fair synchronization, remote memory access and
memory management. Some of these are discussed in the chapters Zones (page 50) and Ex-
tending Zones (page 81).

Two portable interfaces are used: Brahma abstracts low-level thread, synchronization,
and active messages, while Siva builds on these facilities to provide memory manage-
ment and is the low-level interface for zones. This organization is illustrated by figure
22. Brahma provides functionality for dealing with individual clusters and threads; how-
ever, pSather provides language mechanisms at a higher level. Functionality that is im-
plemented by the Sather compiler and runtime on top of Brahma include the
management of locks, thread migration, and remote memory access.

Generated code,
lock manager and other runtime

Siva

Brahma

thread active
primitives | messages

C runtime and OS

Figure 22: Dependencies between runtime components. Generated C code depends on Siva for
memory management and Brahma for threads and messages, and is shielded from system-specific
code by the Brahma and Siva interfaces.
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Brahma

Sather provides locking constructs to atomically lock more than one lock, and permits so-
phisticated general locking conditions. Brahma synchronization only applies to individual,
low-level locks. A distributed, high-level lock manager runtime is built on top of Brahma
primitives. Sather lock statements are converted into manipulations of a runtime data
structure that also manages exceptions; it is usually a stack, but can become a tree when a
yield statement occurs inside of a protect statement. This data structure keeps all the history
needed for resolution of multiple locks without deadlock or starvation. Sather lock classes
are general and user-definable, allowing user extension of the lock manager.

There are three kind of synchronization provided by Brahma: there are mutual exclusions
and semaphores, and a lightweight spin lock. The heavy versions are equivalent to the syn-
chronization functionality in Solaris threads - they may block, and the critical regions they
are used with may be of arbitrary length and be nested. The spinlock tries to use inline
atomic instructions to build very fast spinlock-style mutual exclusion. This should only be
used for very small, nonblocking, non-nested exclusion. The heavy versions can always
safely replace a spinlock versions, with some performance penalty. Using locks and sema-
phores in request or reply handlers must be avoided to eliminate the possibility of dead-
lock.

Sather threads may be migrated between nodes with transparent context; Brahma threads
are always local. Sather threads which move from node to node must be assembled from
local threads. For example, when a remote call raises an exception, the exception must be
caught remotely and re-raised on the initiating node. Similarly, the lock manager must be
able to track the various Brahma thread IDs that a single Sather thread may assume in or-
der to avoid deadlock. More details of the lock manager and inter-node thread manage-
ment can be found in [37].

Brahma uses active messages, an asynchronous communication mechanism that is light-
weight enough to expose the full hardware performance of modern interconnection net-
works [36]. Each message describes a user-level handler which is executed on message
arrival with the message body as argument. The handler must execute quickly, and gets
the message out of the network and into the computation as soon as possible. Active
messages have constraints to avoid deadlock. Reply handlers must not block and it is
only possible to reply to the same node that sends a request.

Tolerating latency requires overlapping communication and computation, which requires
low-overhead asynchronous communication. The key optimization in active messages is
the elimination of buffering. Eliminating buffering on the receiving end is possible because
most messages hold a simple request to which the handler can immediately reply; for ex-
ample, a handler servicing a request for a word of remote memory requires no storage.
Buffering on the sending side is reduced because small messages can be released into the
network quickly; the buffering in the network itself suffices.
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As an optimization, active messages for setting up bulk memory transfers are provided.
On some platforms, DMA and smart coprocessors can greatly reduce the overhead of
this noncomputational operation. In Sather, these are invoked for large array copying be-
tween clusters.

Siva

Sather threads may transparently access memory on other nodes; Brahma provides a mes-
saging facility, but no mechanisms for encoding pointers to a remote address space or re-
solving remote accesses. Similarly, garbage collection is inherently distributed, so Brahma
can not address it. The Brahma interface views the world as a flat collection of address
spaces; it is up to the client of the Brahma interface to add code to explicitly turn references
from one address space to another into active message calls. The zone model, however,
views the world as a hierarchy rather than a flat space. Siva makes use of Brahma to pro-
vide memory management customized to the memory hierarchy of the target.

Siva supplies a far pointer representation in which local pointers have unchanged repre-
sentation while far pointers are encoded with unused bits. It is expected that the client
code uses Brahma for communication and synchronization as well. Siva dictates the far
pointer representation and must be used for memory management, but the Siva client (for
Sather, the generated C code) is expected to translate pointers passed over messages explic-
itly. Brahma had to combine threads and active messages into a single package because
they are not orthogonal. In the same way, Siva combines memory managment and the rep-
resentation of far pointers into a single package because garbage collection needs to dictate
the representation of pointers to be able to identify reachable objects.

On machines without 64 bit addresses, it is common to store far references by concatenat-
ing a node identifier and a pointer which is valid only within that node [79]. If normally
unused high or low bits are used, this can be done using a single word. The pSather runt-
ime uses a similar approach, with a special representation to make the near case fast. All
references are represented relative to the node storing the pointer so that near pointers
have the same representation as local pointers on that node. The bits of the address used
to store the node identifier are all zero when the pointer is on that node. Code which com-
poses messages translates from the representation of the pointer in the sending node to the
representation appropriate in the receiving node; this requires two instructions with the
SparcISA. In the common case of references to near variables, determining that the pointer
is near only requires checking that the upper bits are zero, requiring two or three instruc-
tions.

Porting

Sather has been ported to a wide range of systems, enabled by compilation through ANSI
C and the popular Boehm-Weiser conservative garbage collector [16]. Presently pSather
runs under Solaris and Linux and has been ported to the Meiko MPP and a network of
Myrinet connected four processor Sparcstation 10s. Table 15 shows the memory hierarchy



Sather 111

System Level | Physical | Repli- | Total | Block Block | Placement  Assoc-
Connect | cation | Size Size count iativity
L1 chip 1 8K 32 128 H/W 2 way
Intel PC: L2 module 1 256K 32 8K H/W 4 way
Pentium Pro | 1y g chip 1 | 256K | 4K 64 H/W 4 way
DRAM | board 1 64M 4K 16K (ON) Full
L1 chip 1 16K 2x16 512 H/W Direct
Ultrasparc [ L2 board 1 512K 64 16K H/W Direct
TLB chip 1 512K 8K 64 H/W Full
DRAM | board 1 128M 8K 16K (ON) Full
L2 module 1 256K 32 8K H/W Direct
SS10:
single TLB module 1 256K 4K 64 H/W Full
Hypersparc | pRAM | board 1 128M | 4K 32K oS Full
L2 module 4 256K 32 8K H/W Direct
SS10 SMP:
d TLB module 4 256K 4K 64 H/W Full
qua
Hypersparc | procs | board 1 M | 32 32K H/W 4 way
DRAM | board 1 128M | 4K 32K (ON) Full
L2 module 12 256K 32 8K H/W Direct
ICSI NOW:
3 nodes by TLB module 12 256K 4K 64 H/W Full
Myrinet, Procs board 3 M 32 32K H/W 4 way
quad
Hypersparc | DRAM | board 3 128M | 4K 32K (ON) Full
System | network 1 384M | 128M 3 App Full
L2 module 96 256K 32 8K H/W Direct
Meiko MPP:
48 nodes by TLB module 96 256K 4K 64 H/W Full
Cusg’mlnet’ Procs | board 48 | 512K | 32 16K H/W 2 way
ua
Hypersparc | DRAM board 48 128M 4K 8K oS Full
System | network 1 6G 128M 48 App Full

Table 15: Levels of the memory system of Sather platforms. All sizes in bytes; registers and disk
storage are not shown.
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for the systems to which pSather has been ported and used for performance results in this
thesis. As always, quantitative analysis is recommended to help shed light on the subject
[47].

THREADED EXTENSION

All Sather 1.1 implementations must support the language kernel, but the language exten-
sions which may not be meaningful on every platform or which can be very difficult to im-
plement. For example, the synchronization extension cannot be implemented without
low-level thread support, and the distributed extension is not relevant on uniprocessors.
Although these extensions are optional, they are part of the Sather specification. For exam-
ple, Sather 1.1 implementations with thread support must provide the language extensions
described here. Other language extensions not described here include standard interfaces
to C and Fortran. The ICSI compiler supports all extensions described in the specification
on one or more platforms.

In serial Sather there is only one thread of execution; in pSather there may be many. Mul-
tiple threads are similar to multiple serial Sather programs executing concurrently, but
threads share variables of a single namespace. A new thread is created by executing a fork,
which may be a par or fork statement (page 113), parloop statement (page 114), or an attach
(page 118). The new thread is a child of the forking thread, which is the child’s parent.
pSather provides operations that can block a thread, making it unable to execute statements
until some condition occurs. pSather threads that are not blocked will eventually run, but
there is no other constraint on the order of execution of statements between threads that
are not blocked. Threads no longer exist once they terminate. When a pSather program be-
gins execution it has a single thread corresponding to the main routine.

Serial Sather defines a total order of execution of the program’s statements; in contrast,
pSather defines only a partial order. This partial order is defined by the union of the con-
straints implied by the consecutive execution order of statements within single threads and
pSather synchronization operations between statements in different threads. As long as
this partial order appears to be observed it is possible for a pSather implementation to over-
lap multiple operations in time, so a child thread may run concurrently with its parent and
with other children. Using threads may render programs nondeterministic. Preconditions,
postconditions, and class invariants may not work as intended when originally serial code
is used with multiple threads.

The threaded extension may be implemented without the synchronization extension. This
is only useful with data parallel code, in which it is not possible for threads to affect each
other through side effects. Platforms may interpret such data parallelism in different ways,
such as an opportunity for vectorization, or by executing only one ‘thread’ at a time.
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par and fork statements

Example: par
fork ... end
end
Syntax:

fork_statement = fork statement_list end

par_statement = par statement_list end

Threads may be created with the fork statement, which must be syntactically enclosed in a
par statement, which also implicitly creates a thread. When a fork statement is executed, it
forks a body thread to execute the statements in its body. Local variables that are declared
outside the body of the innermost enclosing par statement are shared among all threads in
the par body. All threads created by a fork must complete before execution continues past
the par. The rules for memory consistency apply to body threads, so they may not see a con-

sistent picture of the shared variables unless they employ explicit synchronization (page
122).

Each body thread receives a unique copy of every local declared in the innermost enclosing
par body. When body threads begin, these copies have the value that the locals did at the
time the fork statement was executed. Changes to a thread’s copy of these variables are nev-
er observed by other threads. Iterators may not occur in a fork or par statement unless they
are within an enclosed loop. ‘quit’, ‘yield’, and ‘return” are not permitted in a par or fork
body.

As a generalization of serial Sather, it is a fatal error if an exception occurs in a thread which
is not handled within that thread by some protect statement. Because par and fork bodies
are executed as separate threads, an unhandled exception in their bodies is a fatal error.
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Par and Fork Examples

In this code A and B can execute concurrent-
ly. After both A and B complete, C and D
can execute concurrently. E must wait for A,
B, C, and D to terminate before executing.

In this code, ‘outer’ is declared outside the
par, so this variable is shared by the forked
thread. However, because ‘inner’ is inside
the par, the fork body receives its own local
copy at the time of the fork.

parloop statement

par
par
fork A end;
B
end;
fork C end;
D
end;
E

outer:INT;
par
inner:INT;
fork
-- fork body
end
end

Example:

Syntax:

parloop c::=clusters! do ... end

parloop_statement = parloop statement_list do statement_list end

The parloop statement is syntactic sugar to make convenient a common parallel program-

ming idiom.
parloop S7 do S2 end

is syntactic sugar for:

par loop S7 fork S2 end end end
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Parloop example

This code applies ‘frobnify” using a separate par
thread for each element of an array. loop e::= a.elt!;
fork e.frobnify end
end
end
Using the parloop shorthand, the same code parloop e: := a.elt! do
could also be written: ende-fmbnify

SYNCHRONIZATION EXTENSION

The synchronization extension allows threads to block; this requires threading facilities
not available on every platform. Programmers should not assume that synchronization
is less expensive than thread creation; creating threads as required may be more efficient
than attempting to manage a pool of threads that wait for things to do. Generally, mini-
mizing synchronization provides the greatest throughput.

lock statement

Examples: lock

when m then ...
else ...

end;

lock
guard d.size > 0 when m then ...
when rw.writer then ...

end

Syntax:

lock_statement =
lock expression {, expression } then statement_list [ else statement_list | end
lock lock_when { lock_when } [ else statement_list ] end

lock_when =
[ guard expression | when expression { , expression } then statement_list

Locks are special built-in synchronization objects that control the blocking and unblocking
of threads. A thread acquires a lock, then holds the lock until it releases it. A single thread may
acquire a lock multiple times recursively; it will be held until a corresponding number of
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releases occur. Exclusive locks, such as ‘MUTEX’, may only be held by one thread at a time.
In addition to these simple exclusive locks, it is possible to lock on other more complex syn-
chronization types (on page 117).

Locks may be safely acquired with the lock statement. Expressions following a ‘when’ or
‘lock” are called locking conditions, and must be subtypes of $LOCK (page 117). The state-
ment list following the ‘then’ is called the lock branch. A lock statement guarantees that all
listed locks are atomically acquired before a lock branch executes. Expressions following a
‘guard’ are called guarding conditions. The statements following the ‘else’ are called the else
branch. The ‘when’ is dropped in the first form, convenient when there is only a single lock-
ing condition and no guard.

When a lock statement is entered the following occur in strict order:

1. Any guarding conditions are evaluated in textual order. If any evaluate to ‘false’, the
corresponding when clause will not be considered further. when clauses without a
guarding condition or for which the condition evaluates to ‘true’ are accepted.

2. If no when clauses are accepted, the else branch executes; it is a fatal error if there is
no else clause in such a case.

3. For all accepted clauses, all locking conditions are evaluated, in textual order, left to
right.

4. If the locking conditions of some when clause can be immediately satisfied, those
locks are obtained, the corresponding lock branch executes, and execution concludes
without considering other accepted when clauses.

5. If there is an “else’ clause and no when clauses have lock conditions that can immedi-
ately be satisfied, then the else branch executes. If there is no ‘else’ clause, the execut-
ing thread blocks until the locking conditions of some when clause can be satisfied.
After the locking conditions are locked atomically, the corresponding lock branch exe-
cutes.

Because all listed locks are acquired atomically, deadlock can never occur due to concur-
rent execution of two or more lock statements with multiple locks, although it is possible
for deadlock to occur by dynamic nesting of lock statements or through other synchroniza-
tion.

The implementation of lock statements also ensures that threads that can run will eventu-
ally do so; no thread will face starvation because of the operation of the locking and sched-
uling implementation. Similarly, no when clause will be repeatedly chosen over another
such that a clause starves; for each when clause that can be acquired, there is a nonzero
probability that it will be chosen. However, it is frequently good practice to have threads
whose programmer supplied enabling conditions are never met in a given run (exceptional
cases) or are not met after some time (alternative methods). One thread in an infinite loop
can prevent other threads from executing for an arbitrary time, unless it calls SYS::defer
(page 123).
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All locks acquired by the lock statement are released when the lock or else branch stops
executing; this may occur due to finishing the branch, termination of a loop by an iterator,
a return, a quit, or an exception. yield may occur in a lock statement, but locks are not re-
leased until the iterator quits. Exceptions in a lock body will not be raised outside the body
until all associated locks have been released.

unlock statement
Example: unlock g

Syntax:

unlock_statement = unlock expression

Locks may also be unlocked before exiting the lock branch by an unlock statement. An un-
lock statement must be syntactically within a lock branch; in a par or fork statement an un-
lock must be inside an enclosed lock branch. It is a fatal error if the expression does not
evaluate to a $LOCK object which is locked by the enclosing lock statement.

$LOCK classes

All synchronization objects subtype from $LOCK. In addition to primitive $LOCK class-
es, some synchronization classes return $LOCK objects to allow different kinds of lock-
ing. The concrete type of the returned object is dependent on the pSather
implementation.

¢ MUTEX s a simple mutual exclusion lock. Two threads may not simultaneously lock
a MUTEX.

* RW_LOCK is used to manage reader-writer synchronization, and defines two meth-
ods ‘reader” and ‘writer’. These return $LOCK objects. If ‘rw’ is an object of type
RW_LOCK, then a lock on ‘rw.reader’ or ‘rw.writer’ blocks until no thread is locking
on ‘rw.writer’, although multiple threads can simultaneously hold ‘rw.reader’. Read-
ers are granted priority over writers. Attempting to obtain a writer lock while holding
the corresponding reader lock causes deadlock.

¢ WR_LOCK and FRW_LOCK also manage reader-writer synchronization. WR_LOCK
gives writes priority over reads, while FRW_LOCK grants readers and writers equal
priority.

¢ Classes under $ATTACH and $ATTACH(T} (page 119) also subtype from $LOCK.
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Locking example

This code implements five dining chopsticks ::= #ARRAY{MUTEX}(5);
philosophers. The philosophers loop chopsticks.set!(#MUTEX) end;
are seated at a round table and pari'_‘?f% upiol(d);
forced to share a single chopstick do SERG
with each neighbor. They alter- loop
nate between eating and think- think;
ing, but eating requires both lock o o
chopsticks when chopsticks][i], chopsticks[(i+1).mod(5)]
P ’ then eat
end
end
end

Attach statement
Example: g :- forked_computation

Syntax:

attach = expression - expression

Threads can be created by executing an attach. The left side must be of type ‘$ATTACH’ or
‘SATTACH(T}". If the left side is of type ‘SATTACH{T}, the return type of the right side
must be a subtype of ‘“T’. If the left side is of type ‘SATTACH’, the right side must not return
a value. There must be no iterators on the right side.

When an attach is executed, the following takes place in strict order:

1. The left side is evaluated.

2. $ATTACH and $ATTACH({T} both subtype from $LOCK. If the synchronization object
of the left side is locked by another thread, the executing thread is suspended until it
becomes unlocked.

3. Any local variables on the right side are evaluated.

4. A new thread is created to execute the right side. This new thread is attached to the
synchronization object of the left side. The new thread receives a unique copy of ev-
ery local variable; changes to these locals by the originating thread are not observed
by the new thread. Similarly, if ‘out” and ‘inout” arguments occur on the right side,
changes to local variables are not be observed by the originating thread. The rules for
memory consistency (page 122) apply for other variables such as object attributes.

5. When execution of the right side completes, the new thread terminates, defaches itself,
and enqueues the return value or increments the counter, if appropriate.
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Attached threads may be thought of as producers that enqueue their return value (or in-
crement a counter) when they terminate.

Every pSather thread is attached to exactly one $ATTACH object; even the main routine is
attached to an unnamed object. The thread executing a par statement implicitly creates an
$ATTACH object and forks a thread to execute the body. The newly created thread, as well
as all threads created by fork statements syntactically in the par body, are attached to this
same unnamed object. The thread executing a par statement blocks until there are no
threads attached to the object. This ensures that all threads created by a fork have complet-
ed before execution continues past the par.

SATTACH classes

There are four built-in $ATTACH classes; all subtype from $LOCK. These classes all have
an implicit locked status (unlocked, or locked by a particular thread) and a set of attached
threads.

e FUTURE({T} provides a handle to the result of a computation. It is an error to attach
more than one thread to a future at a time.

¢ ATTACH allows multiple threads to be attached, but does not allow return values.

¢ Gates are powerful synchronization primitives which generalize fork/join, mailboxes,
semaphores, and barrier synchronization. There is a typed GATE(T} that has a queue
of values which must conform to “T’, and an unparameterized class GATE with only
an integer counter.

In addition to thread attachment, these classes support the operations listed in the follow-
ing tables 16, 17, 18, and 19. Some operations are exclusive: these lock the gate before pro-
ceeding and unlock it when the operation is complete. The exclusive operations also
perform imports and exports significant to memory consistency (page 122).

Signature Description Exclusive?

create:SAME Make a new unlocked synchronization object with an empty queue N/A
or zero counter and no attached threads.

has_thread:BOOL Returns true if there is an attached thread. No

threads:$LOCK Returns a lock which blocks until lockable and there is some thread | No
attached; then it is locked. Holding this lock does not prevent the
completion of attached threads.

no_threads:$LOCK | Returns a lock which blocks until lockable and there are no threads No
attached; then it is locked. Holding this lock does not prevent the
attachment of threads by the holder.

Table 16: Operations supported by ATTACH, FUTURE{T}, GATE, and GATE{T}
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Signature Description Exclusive?
get:T Return head of queue without removing. Blocks until queue is not Yes
empty.
empty:$LOCK Returns a lock which blocks until lockable and the queue is empty; No
then it is locked. Holding this lock does not prevent the holder from
making the queue become not empty.
not_empty:$LOCK | Returns a lock which blocks until the gate is lockable and the gate’s | No
queue is not empty; then the gate is locked. Holding this lock does
not prevent the holder from making the queue become empty.
Table 17: Operations supported by FUTURE{T} and GATE{T}
Signature Description Exclusive?
size:INT Returns number of elements in queue. No
set(T) Replace head of queue with argument, or insert into queue if empty. | Yes
enqueue(T) Insert argument at tail of queue. Yes
dequeue:T Block until queue is not empty, then remove and return head of Yes
queue.
Table 18: Operations supported only by GATE{T}
Signature Description Exclusive?
size:INT Returns counter. No
get Blocks until counter is nonzero. Yes
set If counter is zero, set to one. Yes
enqueue Increment counter. Yes
dequeue Block until counter nonzero, then decrement. Yes
empty:$LOCK Returns a lock which blocks until lockable and the counter is zero; No
then it is locked. Holding this lock does not prevent the holder from
making the counter become nonzero.
not_empty:$LOCK | Returns a lock which blocks until the gate is lockable and the gate’s | No

counter is nonzero; then the gate is locked. Holding this lock does
not prevent the holder from making the counter become zero.

Table 19: Operations supported only by GATE
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Attach examples

Using a future. The statement ‘f :- compute’
creates a new thread to do some computa-
tion; the current thread continues to exe-
cute. Itblocks at ‘f.get’ if the result is not yet
available.

Obtaining the first result from several com-
peting searches. Unlike a future, a gate may
enqueue multiple values. When one of the
threads succeeds, its result is enqueued in
‘g’. If the results of the other two threads
are not needed, additional code would be
needed to prematurely halt the other
threads.

sync statement

-- Create a future of FLT
f: .= #FUTURE{FLT};
f :- compute;

.r.ésult = f.get;

g :- search(strategy1);
g :- search(strategy?2);
g :- search(strategy3);

result := g.dequeue;

Example:

Syntax:

sync_statement = Sync

sync

The sync statement allows barrier synchronization between threads attached to the same
synchronization object. A thread executing a sync blocks until all threads attached to the
same object are also blocking on sync (or have terminated).
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Sync example

This code applies ‘phasel” and ‘phase2’ to
each element of an array, waiting for all parloop e::= a-e”i do e.phase1 end;
‘phase1” before beginning ‘phase2”: parloop e::= a.elt! do e.phase2 end

This code does the same thing without iter-

ating over the elements for each phase. A parloop e::= a.elt! do
single thread is forked for each element. gﬁfgflset

Each thread executes ‘phasel’, the sync, e.phéseZ

and ‘phase2’. The thread executing the par end

waits for all threads to terminate before pro-

ceeding.

Because local variables declared in the parloop become unique to each thread, the explicit
sync can be useful to allow convenient passing of state from one phase to another through
the thread’s local variables, instead of using an intermediate array with one element for
each thread.

Memory consistency

Threads may communicate by writing and then reading variables or attributes of objects.
All assignments are atomic (the result of a read is guaranteed to be the value of some pre-
vious write); assignments to variables of immutable type atomically modify all at-
tributes. Writes are always observed by the thread itself. Writes are not guaranteed to be
observed by other threads until an export is executed by the writer and a subsequent ini-
port is executed by the reader, even if the writes were previously observed by the reading
thread. Exports and imports may be written explicitly (page 123) and are also implicitly
associated with certain operations:

An import occurs: An export occurs:
In a newly created thread In parent thread when a child thread is forked
On exiting a par statement (children have terminated) By a thread on termination
On entering one of the branches of a lock statement On entering an unlock, or exiting a lock
On exiting exclusive operations (page 119) On entering exclusive operations
On completion of a Sync statement On initiation of a Sync statement

This model has the property that it guarantees sequential consistency to programs without
data races.
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Memory consistency examples

This incorrect code may loop forever wait-
ing for flag, print ‘i is 1’, or print ‘i is 0.
The code fails because it is trying to use
flag to signal completion of ‘i:=1’, but there
is no appropriate synchronization occur-
ring between the forked thread and the
thread executing the par body. Even
though the forked thread terminates, the
modification of ‘flag’ may not be observed
because there is no import in the body
thread. Even if the modification to flag is
observed, there is no guarantee that a mod-
ification to ‘i’ will be observed before this,
if at all.

This code will always print ‘i is 1’ because
there is no race condition (unlike the previ-
ous example). An export occurs when the
forked thread terminates, and an import oc-
curs when par completes. Therefore the
change to ‘i" must be observed.

SYS class

-- These variables are shared
i:INT;
flag:BOOL;
par
fork
i=1;
flag := true;
end;
-- Attempt to loop until change
--in flag’ is observed
loop untill(flag) end
#OUT + ‘iis’ +i+ '\’
end

i:INT; -- This is a shared variable
par
fork i:=1 end;
end
#OUT + ‘iis’+i+'\n’

pSather extends the SYS class with the following routines:

Routine Description
defer Inform scheduler that this is a good time to preempt this thread.
import Execute an import operation (page 122).
export Execute an export operation (page 122).

DISTRIBUTED EXTENSION

This section introduces distributed constructs that allow the programmer to extend
pSather code with explicit placement information for efficiency on distributed pSather im-
plementations. Explicitly placing objects and threads does not affect the semantics of the
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original code, but it is also possible to deliberately change the original flow of control (ie.
using with-near on page 125). The distributed extension presented here is replaced entirely
by the zone extensions described in chapters Zones (page 50) and Extending Zones (page
81).

The memory performance model of pSather has two levels. The basic unit of location in
pSather is the cluster. The programmer may assume that reading or writing memory on
the same cluster is significantly faster than on a remote cluster. A cluster corresponds to
an efficient group in the memory hierarchy, and may have more than one processor. For
example, on a network of workstations a cluster would correspond to one workstation, al-
though that workstation may have multiple processors sharing a common bus. This model
is appropriate for any machine for which local cached access is significantly faster than
general access.

At any time a thread has an associated cluster id (an INT), its locus of control. Until modified
explicitly, the locus of thread remains the same throughout the thread’s execution. When
execution begins, the main routine is at cluster zero. The locus of control of a child thread
is the same as the locus of its parent at the time of the fork.

The ‘@’ operator

Example: start_work @ least_loaded;

Syntax:
expression = expression @ expression
fork_statement = fork @ expression ; statement_list end

parloop_statement = parloop statement_list do @ expression ; statement_list end

The locus of a thread may be explicitly moved for the duration of the evaluation of a meth-
od call. An expression following the ‘@’ must evaluate to an INT, which specifies the clus-
ter id of the locus of control the thread will be at while it evaluates the preceding method.
Subexpressions of the left side are evaluated at the current locus of execution and are not
relocated. It is a fatal error for a cluster id to be less than zero or greater than or equal to
clusters (see page 48). The ‘@’ operator has lower precedence than any other operator.
When iterator calls are on the left side, each iterator evaluation may be placed differently
on successive iterations.

The ‘@’ notation may also be used to explicitly place forked body threads of fork and par-
loop statements. Although for these constructs the location expression may appear to be
within the body, the location expression is executed before threads are forked and is not
part of the body.
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Location expressions

All reference objects have a unique associated cluster id, the object’s location. When a refer-
ence object is created by a thread, its location will be the same as the locus of control when
the new expression was executed. A reference object is near to a thread if its current location
is the same as the thread’s locus of control, otherwise it is far.

There are several built-in expressions for location:

Expression Type Description
here INT The cluster id of the locus of control of the thread.
where(expression) | INT The location of the argument. If the argument is void or an immutable

type, it returns ‘here’.

near(expression) BOOL true if the argument is on the same cluster as the executing thread. If
the argument is void or an immutable type, it returns false.

far(expression) BOOL true if the argument is not on the same cluster as the executing thread.
If the argument is void or an immutable type, it returns false.

clusters INT Number of clusters. Although a constant, may not be available at com-
pile time.
clusters! INT Iterator which returns all cluster ids in order, O through clusters-1.

with-near statement

Example: with able, baker near ... end

Syntax:

with_near_statement >
with ident_or_self list near statement_list [else statement_list] end

ident_or_self list = identifier | self{ , identifier | self }

The with-near statement asserts that particular reference objects must remain near at run-
time. The ident_or_self list may contain local variables, arguments, and self; these are
called near variables. When the with statement begins execution, the identifiers are checked
to ensure that all of them hold either objects that are near or void. If this is true then the
statements following near are executed, and it is a fatal error if the identifiers stop holding
either near objects or void at any time. Itis a fatal error if some identifiers hold neither near
objects nor void and there is no else. Otherwise, the statements following the else are exe-
cuted.
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